
Matrices-student

September 9, 2024

1 Linear Algebra and Python Lists
This notebook will review some important concepts in linear algebra while helping you practice
working with lists and nested lists in Python. You will provide code cells as needed to complete
the sections below. Testing code is provided for you to help check that your methods perform as
expected.

[]: import numpy as np
from matplotlib import pyplot as plt
import math

1.1 Dot product of two vectors
⃗𝑎 ⋅ �⃗� = ∑𝑖 𝑎𝑖𝑏𝑖 is the dot product (or inner product) between ⃗𝑎 and ⃗𝑏. Write a python function

dot_product(a,b) that returns a dot product of two input python lists (do not use numpy arrays
yet). If the input types do not match, raise a ValueError.

[]: ## Your code goes here. Insert cells as needed.

The following cells will check your dot_product method for correctness and for catching errors.

[]: assert(dot_product([1,3],[2,6])==20)

[]: try:
dot_product([1,2,3],[4,5])
print("Shouldn't get here")

except ValueError:
print("Size mismatched caught")

1.2 Cross Product of two vectors
Given two real 3-vectors a and b:

A = ⎛⎜
⎝

𝑎1
𝑎2
𝑎3

⎞⎟
⎠

, B = ⎛⎜
⎝

𝑏1
𝑏2
𝑏3

⎞⎟
⎠

The cross product of a and b is a new vector C defined as:

1

C = A × B = ⎛⎜
⎝

𝑎2𝑏3 − 𝑎3𝑏2
𝑎3𝑏1 − 𝑎1𝑏3
𝑎1𝑏2 − 𝑎2𝑏1

⎞⎟
⎠

This resulting vector C is orthogonal (perpendicular) to both a and b, and its magnitude is equal
to the area of the parallelogram formed by a and b.

The direction of C is determined by the right-hand rule.

The cross product of a and b can be expressed as the determinant of a 3x3 matrix:

a × b = ∣
i j k

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

∣

Where i, j, and k are the unit vectors along the x, y, and z axes, respectively.

To compute the determinant, expand along the first row (using cofactor expansion):

a × b = i ∣𝑎2 𝑎3
𝑏2 𝑏3

∣ − j ∣𝑎1 𝑎3
𝑏1 𝑏3

∣ + k ∣𝑎1 𝑎2
𝑏1 𝑏2

∣

Each of these 2x2 determinants is computed as follows:

• For the i component:
i ⋅ (𝑎2𝑏3 − 𝑎3𝑏2)

• For the j component (note the negative sign):

−j ⋅ (𝑎1𝑏3 − 𝑎3𝑏1)

• For the k component:
k ⋅ (𝑎1𝑏2 − 𝑎2𝑏1)

Thus, the cross product is:

a × b = (𝑎2𝑏3 − 𝑎3𝑏2) i − (𝑎1𝑏3 − 𝑎3𝑏1) j + (𝑎1𝑏2 − 𝑎2𝑏1) k

Or, written in vector form:

a × b = ⎛⎜
⎝

𝑎2𝑏3 − 𝑎3𝑏2
𝑎3𝑏1 − 𝑎1𝑏3
𝑎1𝑏2 − 𝑎2𝑏1

⎞⎟
⎠

This is the cross product of the vectors a and b, derived from the determinant of a 3x3 matrix.

Write a python method which returns the cross product of 2 3D vectors, and throws an error in
case of invalid input

2

[]: ## Your code goes here. Insert cells as needed.

These cells will check your method

[]: assert(cross_product([1,3,2],[5,7,2])==[-8,8,-8])

[]: try:
cross_product([1,2,3],[4,5])
print("Shouldn't get here")

except ValueError:
print("Size mismatched caught")

1.3 Vector magnitude
The magnitude, or length, of a vector is defined as

|| ⃗𝑥|| =
√

⃗𝑥 ⋅ ⃗𝑥 = √𝑥2
0 + 𝑥2

1 + ⋯ + 𝑥2
𝑛−1. Notice the exponent on each element is 2 and the radical

exponent is 1
2 . This is an 𝐿2 norm. If we compute the value 3√𝑥3

0 + 𝑥3
1 + ⋯ + 𝑥3

𝑛−1, this is an
𝐿3 norm. The sum of absolute values |𝑥1| + |𝑥2| + ⋯ + |𝑥𝑛| is called the 𝐿1 norm. All of these
are 𝑝-norms, with the 𝑝 = 2 being the most familiar, and the 𝑝 = 1 norm being useful in several
settings.

Write a python method norm(a) which returns the 2-norm (length) of a vector, by calling
dot_product. Then write p_norm(a,p) which evaluates the 𝑝-norm for any integer 𝑝 ≥ 1 and
throws an error if needed.

[]: ## Your code goes here. Insert cells as needed.

This cell will check your method

[]: assert(norm([1,-1,1,-1])==2)
assert(norm([0])==0)
assert(norm([30,40,50])==np.sqrt(5000))

[]: ## Your code goes here. Insert cells as needed.

These cells will check your p_norm

[]: assert(p_norm([1,-1,0],1)==2)
assert(p_norm([1,-1,1,-1],2)==2)
assert(p_norm([2,-2,4,-4],3)==0)

[]: try:
p_norm([1,2,3],0.5)
print("Shouldn't get here")

except ValueError:
print("Invalid p caught")

3

1.4 Angle between vectors
A very important result from linear algebra used in machine learning relates the angle between two
vectors. You will derive this yourself. Given a and b, you can form a triangle where the vectors
share the same tail. The vector forming the third side is the vector a-b. Find the length of this
third side in terms of a and b. Hint: use the law of cosines. Hint: dot product distributes like
‘times’

Using your result write a function angle_between that returns the smallest angle between two
vectors a and b. Make sure your result is in the range [0, 𝜋]

[]: ## Your code goes here. Insert cells as needed.

[]: assert(abs(angle_between([1,1],[1,0])-math.pi/4)<1e-9)
assert(abs(angle_between([1,0],[1,0]))<1e-9)
assert(abs(angle_between([1,0],[0,1])-math.pi/2)<1e-9)
assert(abs(angle_between([1,2,3,4],[-4,-3,-2,-1])-2.300523983021863)<1e-9)

[]: try:
angle_between([1,2,3],[4,5])
print("Shouldn't get here")

except ValueError:
print("Size mismatch caught")

1.5 Matrix Operations
Matrix addition and subtraction are componentwise and require matrices of the same size: 𝑚𝑖𝑗 =
𝑎𝑖𝑗 + 𝑏𝑖𝑗 or 𝑚𝑖𝑗 = 𝑎𝑖𝑗 − 𝑏𝑖𝑗

Matrix multiplication involves one entire row and one entire column of each matrix to determine
an entry in the product. It can be written as

𝑚𝑖𝑗 = 𝑎𝑖𝑘𝑏𝑘𝑗

Where we are using Einstein notation. Each repeated index (here 𝑘) is an index of summation.
Thus

𝑎𝑖𝑘𝑏𝑘𝑗 =
𝑚

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗

Matrix multiplication requires an (𝑚1 × 𝑛1) matrix multiplied on the right by an (𝑚2 × 𝑛2) matrix
where 𝑛1 = 𝑚2. The result is an (𝑚1 × 𝑛2) matrix.

Write three methods: mat_add, mat_sub, mat_mul. You should throw an error if dimensions do
not match. You should store all matrices as 2D lists in python, i.e. lists of lists. The 𝑖, 𝑗 element is
referenced by M[i][j], both starting at 0.

[]: ## Your code goes here. Insert cells as needed.

4

[]: A=[[1]]
B=[[2]]
assert(mat_add(A,B)==[[3]])

A=[[-4,3],[1,-10]]
B=[[2,-5],[-9,1]]
assert(mat_add(A,B)==[[-2,-2], [-8,-9]])
assert(mat_add(B,A)==[[-2,-2],[-8,-9]])

A = [[1,2,3],[5,3,-1],[6,5,2]]
B = [[4,-2,2],[2,4,3],[6,2,2]]
assert(mat_add(A,B)==[[5,0,5],[7,7,2],[12,7,4]])

[]: try:
mat_add([[1,2,3],[4,5,6]],[[1,2],[3,4]])
print("Shouldn't get here")

except ValueError:
print("Size mismatch caught")

[]: ## Your code goes here. Insert cells as needed.

[]: A=[[1]]
B=[[2]]
assert(mat_transpose(mat_transpose(A))==A)
assert(mat_transpose(mat_transpose(B))==B)

A=[[-4,3],[1,-10]]
B=[[2,-5],[-9,1]]
assert(mat_transpose(mat_transpose(A))==A)
assert(mat_transpose(mat_transpose(B))==B)

A = [[1,2,3],[5,3,-1],[6,5,2]]
B = [[4,-2,2],[2,4,3],[6,2,2]]
assert(mat_transpose(mat_transpose(A))==A)
assert(mat_transpose(mat_transpose(B))==B)

[]: ## Your code goes here. Insert cells as needed.

[]: A=[[1]]
B=[[2]]
assert(mat_mul(A,B)==[[2]])

A=[[-4,3],[1,-10]]
B=[[2,-5],[-9,1]]
assert(mat_mul(A,B)==[[-35, 23], [92, -15]])
assert(mat_mul(B,A)==[[-13, 56], [37, -37]])

5

A = [[1,2,3],[5,3,-1],[6,5,2],[-10,2,3]]
B = [[4,-2,3,2],[2,4,3,-1],[6,3,2,2]]
C = [[2,-1,-3,4],[3,0,0,-2],[2,-3,7,-9]]

assert(mat_mul(A,B)==[[26, 15, 15, 6], [20, -1, 22, 5], [46, 14, 37, 11], [-18,␣
↪37, -18, -16]])

assert(mat_transpose(mat_mul(A,B)) ==␣
↪mat_mul(mat_transpose(B),mat_transpose(A)))

assert(mat_add(mat_mul(A,B),mat_mul(A,C)) == mat_mul(A, mat_add(B,C)))

[]: try:
mat_mul(mat_transpose(C),A)
print("Shouldn't get here")

except ValueError:
print("Matrix incompatibility caught")

6

	Linear Algebra and Python Lists
	Dot product of two vectors
	Cross Product of two vectors
	Vector magnitude
	Angle between vectors
	Matrix Operations

