
Gaussian_Elimination-student

September 11, 2024

1 Gaussian Elimination
Gaussian elimination is an algorithm for solving a linear system by matrix operations. You will
write code that performs Gaussian elimination on a solvable system and returns the solution. First,
we work through an instructive example.

𝑥 + 2𝑦 − 𝑧 = 1
2𝑥 − 𝑦 + 3𝑧 = 5
3𝑥 + 𝑦 + 3𝑧 = 10

Now, we’ll solve this system using reduced row echelon form (RREF).

1.0.1 Step 1: Write the Augmented Matrix

The augmented matrix for this system is:

⎛⎜
⎝

1 2 −1 | 1
2 −1 3 | 5
3 1 3 | 10

⎞⎟
⎠

Step 2: Apply Row Operations to Achieve RREF

We’ll perform row operations to transform the matrix into reduced row echelon form (RREF).

1. Make the pivot in the first row (top-left corner) a 1.
This is already 1, so no changes are needed.

2. Make the first column below the pivot zeros.
• Add -2 times the first row to the second row: 𝑅2 → 𝑅2 − 2𝑅1

⎛⎜
⎝

1 2 −1 | 1
0 −5 5 | 3
3 1 3 | 10

⎞⎟
⎠

• Add -3 times the first row to the third row: 𝑅3 → 𝑅3 − 3𝑅1

⎛⎜
⎝

1 2 −1 | 1
0 −5 5 | 3
0 −5 6 | 7

⎞⎟
⎠

3. Make the pivot in the second row a 1.

1

• Divide the second row by -5: 𝑅2 → 1
−5𝑅2

⎛⎜
⎝

1 2 −1 | 1
0 1 −1 | −3

5
0 −5 6 | 7

⎞⎟
⎠

4. Make the second column below the pivot zeros.
• Add 5 times the second row to the third row: 𝑅3 → 𝑅3 + 5𝑅2

⎛⎜
⎝

1 2 −1 | 1
0 1 −1 | −3

5
0 0 1 | 4

⎞⎟
⎠

5. Make the third column above the pivot zeros.
• Add 1 times the third row to the second row: 𝑅2 → 𝑅2 + 1𝑅3

⎛⎜
⎝

1 2 −1 | 1
0 1 0 | 17

5
0 0 1 | 4

⎞⎟
⎠

• Add 1 times the third row to the first row: 𝑅1 → 𝑅1 + 1𝑅3

⎛⎜
⎝

1 2 0 | 5
0 1 0 | 17

5
0 0 1 | 4

⎞⎟
⎠

6. Make the second column above the pivot zeros.
• Add -2 times the second row to the first row: 𝑅1 → 𝑅1 − 2𝑅2

⎛⎜
⎝

1 0 0 | −9
5

0 1 0 | 17
5

0 0 1 | 4
⎞⎟
⎠

1.0.2 Step 3: Extract the solution

The system has a unique solution, given by the final column.

𝑥 = −9
5, 𝑦 = −17

5 , 𝑧 = 4

1.1 Coding
Write a method system_solve(A,b) that solves the linear system Ax = b using Gaussian elimi-
nation. You may assume the solution exists and is unique. A should be an 𝑛 × 𝑛 coefficient matrix
and b is an 𝑛 × 1 column vector. Some example input is given for you.

[]: import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi'] = 300 ## for high-dpi displays. edit as needed

[]: A = np.array([[1,2,-1],[2,-1,3],[3,1,3]], np.float64)
b = np.array([[1,3,10]], np.float64).T

2

The following line creates the augmented matrix $(A | b)$. You should use␣
↪this in your method

AA= np.hstack([A,b])

[]: ## Your code goes here. Insert cells as needed.

The following cell will check your code on 10 random 5x5 matrices

[]: for i in range(10):
A = np.random.rand(5,5)*10
x = np.random.rand(5,1)*10
b = A@x
assert((np.abs(system_solve(A,b)-x)<1e-10).all())

1.2 Measuring Error
The Gaussian Elimination algorithm has an error that increases with the size of the input matrix.
In this section you will approximate the rate at which that error grows. Assume the error can be
modeled by a polynomial

𝑒𝑟𝑟(𝑁) ∼ 𝑁𝑘

where 𝑁 is the number of unknowns in the linear system and 𝑘 is a constant to be determined.
It should be noted that in general the error term depends on the relative sizes of the elements in
the coefficient matrix. We are choosing them to be random from [0, 1] so they will usually behave
reasonably the same and so the problem is simplified in our case.

1.2.1 Approach

You will calculate the error in your linear system solver on several systems up to size 𝑁 = 1000.
For each size 𝑁 you will solve 10 random systems and average the error 𝑒(𝑁) over the 25 runs.
You will then find a polynomial fit for the dataset 𝑁 vs. 𝑒(𝑁).
Write a method that takes as parameters the matrix size 𝑁 and the number of repetitions to
compute. Create two random uniform matrices: 𝐴 and 𝑥 (uniformly random over [0, 1], by using
np.random.rand. Compute 𝑏 = 𝐴𝑥. Use your linear solver to find ̃𝑥 given 𝐴, 𝑏 and determine the
length of the error vector 𝑥 − ̃𝑥. Do this for each repetition and return the median error (length of
the error vector). We are using the median instead of the mean because the mean is too sensitive
to outliers and this investigation is rife with outliers!

[]: ## Your code goes here. Insert cells as needed.

Now collect data on various values of 𝑁 up to 1000. Be judicious: this problem takes a while to
solve for large matrices. You should end up with a vector 𝑋 that contains matrix sizes (𝑁) up to
1000 and 𝑌 that contains the average error 𝑒(𝑁).

[]: ## Your code goes here. Insert cells as needed.

3

Now create a scatter plot of 𝑁 vs 𝑒(𝑁). An example plot is shown here

.

[]: ## Your code goes here. Insert cells as needed.

1.3 Regression
You have written a regression routine before, but we will use some built into numpy. Here’s sample
code for doing a quadratic regression

x = # x data as numpy array or python list
y = # y data as numpy array or python list
coefficients = np.polyfit(x, y, 2) # 2 indicates quadratic
a2, a1, a0 = coefficients # in decreasing order of powers
quadratic_model = np.poly1d(coefficients) # make a2x^2 + a1x + a0
y_fit = quadratic_model(x) # now y_fit is a vector

First you should compute a quadratic regression and superimpose the resulting parabola on a
scatterplot of the data

[]: ## Your code goes here. Insert cells as needed.

1.3.1 A regression problem and a solution

Depending on your data the parabola you’ve plotted may or may not look like a decent fit. But
it has one glaring problem. By finding a quadratic fit we are assuming 𝑂(𝑁2) growth of our error
term. But it could be 𝑂(𝑛3) or 𝑂(𝑛2.3). What we want to find is the best exponent 𝑂(𝑛𝑘) for
polynomial growth. This is the perfect time to use a log-log plot. If you transform your data
𝑥𝑙𝑜𝑔 = log(𝑥) and 𝑦𝑙𝑜𝑔 = log(𝑦) and perform a linear fit, the slope of the best fit line tells you the

4

order of growth 𝑘 (derivation of this is discussed in class.)

You should find the best log-log plot slope. Then make a scatter plot of the values x_log and
y_log along with the best fit line. Above the graph print the coefficients of the plot and state your
best estimate of the growth rate 𝑒𝑟𝑟(𝑁) ∼ 𝑁𝑘

[]: ## Your code goes here. Insert cells as needed.

Finally, find the correlation coefficient for x_log and y_log. What amount of the variance is
explained by your linear model? (There are several built in methods than can find this value)

[]: ## Your code goes here. Insert cells as needed.

5

	Gaussian Elimination
	Step 1: Write the Augmented Matrix
	Step 3: Extract the solution

	Coding
	Measuring Error
	Approach

	Regression
	A regression problem and a solution

