
Correlation Coefficient
We assume, as usual, a ground truth model y = f(x) + ϵ where f is usually
unknown, a (possibly random) sample of points (x1, y1), · · · , (xn, yn) and a linear
model ỹ = ax + b. In this setting we usually need to know how good the linear
model is – how well does if capture the ground truth f(x)?

One obvious measure is the sum of squared errors, which we minimized last class
to derive the linear regression equations.

SSE =
n∑

i=1
(ỹi − yi)2

While this literally captures the error in the model on each point, it is hard to
interpret, it scales with the number of points, and is in different units from the
given data. We can normalize it to the mean sum of squared errors:

MSE = 1
n

n∑
i=1

(ỹi − yi)2

which at least doesn’t scale with the number of points but is in different units.
Thus by taking a radical

RMSE =

√√√√ 1
n

n∑
i=1

(ỹi − yi)2

we get the root mean sum of squared errors. This at least scales with the
magnitude of the y values, so you can interpret it somewhat. It is also similar to
a standard deviation, which is familiar to many people. (Note some texts would
divide by n − 2 instead of n to create a truly unbiased estimator for the standard
deviation, but this simpler version aggrees with other data science presentations,
including kaggle.)

Pearson’s Correlation Coefficient
While variants of SSE have their place, one cannot escape the use of r, the
Pearson’s correlation coefficient. Students learn in algebra classes that a linear
regression coefficient r = 1 is a perfect positive correlation and r = −1 is a
perfect negative correlation and r = 0.5 is a weak correlation, for example. We
will take a more precise approach.

One formular for r is

r2 = SSreg

SStot
=

∑
i(ỹi − y)2∑
i(yi − y)2
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Let’s unpack this. SSreg is the sum of squared-error due to regression and SStot

is the sum of squared-error total (due to the original data). Here y = 1
n

∑
i yi is

the mean of the observed yi values. SStot, then, is the variance of the observed
yi values – it is the sum of the squared deviations of the observations from their
mean.

SSreg, on the other hand, is the variance of the predicted ỹi values, relative to
the same observed mean.

The ratio of the two is the ratio of the “explained variance” to the “total variance.”
There is always variance in the original dataset. If our linear model very closely
fits the data, then it will explain most of that original variance. That would
correspond to a high r2 value. On the other hand a low r2 indicates that there
is variance in the data that is not capture by the linear model. Something else
is happening to create this data shape.

It can be helpful to think of r2 as the percent of “explained variance”. You’ll
notice this formula is for r2, not r. Obviously both are < 1 but they are not
identical. We may see more details of the various ways to interpret r vs r2 but
honestly for most cases this explanation is quite good enough and better than
what most people understand!

r=0
You may have been taught that r = 0 implies no correlation between x and y
pairs. This is often indicated in math books with an amorphous cloud of points,
wandering lonely across the page, enigmatic and unknowable. Actually a number
of highly correlated datasets can claim to possess r = 0 values as this helpful
chart shows1

Figure 1: Examples of correlation
1By DenisBoigelot, original uploader was Imagecreator - Own work, original uploader was

Imagecreator, CC0, https://commons.wikimedia.org/w/index.php?curid=15165296
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To be correct, r = 0 implies no linear correlation between x and y. If it so
happens that every predicted ỹi value is identical to the mean y, then r2 = 0.
Datasets with perfect vertical symmetry can have this property.
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