{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "x4HI2mpwlrcn" }, "source": [ "##### Copyright 2019 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "id": "679Lmwt3l1Bk" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "DSPCom-KmApV" }, "source": [ "# Convolutional Neural Network (CNN)" ] }, { "cell_type": "markdown", "metadata": { "id": "klAltGp8ycek" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " View on TensorFlow.org\n", " \n", " \n", " \n", " Run in Google Colab\n", " \n", " \n", " \n", " View source on GitHub\n", " \n", " Download notebook\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "qLGkt5qiyz4E" }, "source": [ "This tutorial demonstrates training a simple [Convolutional Neural Network](https://developers.google.com/machine-learning/glossary/#convolutional_neural_network) (CNN) to classify [CIFAR images](https://www.cs.toronto.edu/~kriz/cifar.html). Because this tutorial uses the [Keras Sequential API](https://www.tensorflow.org/guide/keras/overview), creating and training your model will take just a few lines of code.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "m7KBpffWzlxH" }, "source": [ "### Import TensorFlow" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "iAve6DCL4JH4" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2025-01-23 12:34:33.053411: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", "2025-01-23 12:34:33.062052: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1737653673.072683 2370 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1737653673.075834 2370 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "2025-01-23 12:34:33.086472: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } ], "source": [ "import tensorflow as tf\n", "\n", "from tensorflow.keras import datasets, layers, models\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": { "id": "jRFxccghyMVo" }, "source": [ "### Download and prepare the CIFAR10 dataset\n", "\n", "\n", "The CIFAR10 dataset contains 60,000 color images in 10 classes, with 6,000 images in each class. The dataset is divided into 50,000 training images and 10,000 testing images. The classes are mutually exclusive and there is no overlap between them." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "JWoEqyMuXFF4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n", "\u001b[1m170498071/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 0us/step \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 0/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 0s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8192/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m20:52\u001b[0m 7us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 32768/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m10:29\u001b[0m 4us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 90112/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m5:44\u001b[0m 2us/step " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 204800/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3:21\u001b[0m 1us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 425984/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2:01\u001b[0m 1us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 876544/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 1769472/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 0us/step " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3555328/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6430720/170498071\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9560064/170498071\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 12689408/170498071\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m8s\u001b[0m 0us/step " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 15736832/170498071\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m7s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 18849792/170498071\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m6s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 21954560/170498071\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m5s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 25051136/170498071\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m5s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 28131328/170498071\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 31129600/170498071\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 32677888/170498071\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 34889728/170498071\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 37781504/170498071\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 40722432/170498071\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 43720704/170498071\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 45744128/170498071\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 47718400/170498071\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 50561024/170498071\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 53370880/170498071\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 55984128/170498071\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 57704448/170498071\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 60243968/170498071\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 63160320/170498071\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 66035712/170498071\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 68091904/170498071\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 69902336/170498071\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 72794112/170498071\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 75767808/170498071\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 78733312/170498071\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 80470016/170498071\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 82599936/170498071\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 85409792/170498071\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 88244224/170498071\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 90980352/170498071\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 92692480/170498071\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 95289344/170498071\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 98205696/170498071\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m101081088/170498071\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m103514112/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m105193472/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m107872256/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m110870528/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m113795072/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m115810304/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m117596160/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m120487936/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m123518976/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m126484480/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m128663552/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m130375680/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m133259264/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m136126464/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m139034624/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m140820480/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m143007744/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m146022400/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m148938752/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m151896064/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m154058752/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m155754496/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m158638080/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m161562624/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m164601856/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m166887424/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m168550400/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m170498071/170498071\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 0us/step\n" ] } ], "source": [ "(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()\n", "\n", "# Normalize pixel values to be between 0 and 1\n", "train_images, test_images = train_images / 255.0, test_images / 255.0" ] }, { "cell_type": "markdown", "metadata": { "id": "7wArwCTJJlUa" }, "source": [ "### Verify the data\n", "\n", "To verify that the dataset looks correct, let's plot the first 25 images from the training set and display the class name below each image:\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "K3PAELE2eSU9" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XecZGl53w1fJ1Wu6uocJ6edjewuLOyyCARIIAwCJcuy9CBsXoXHL5IQQsmvkGSFD7KCZTm8li3rQSDJlpyEECAkBOyyiV02p8l5pqenY3XlOvH5o3u6+/e7a3emoaaHcH357Ie5uqrOfZ/73OGcqt/vvqwkSRJRFEVRFEVRFEXpIfb1roCiKIqiKIqiKN946IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ7jXs2b4jiW6elpKRaLYlnWta6T8nVAkiRSq9VkYmJCbPvaPq9q/1OYrex/ItoHFUT7n3K90TVYuZ5spv9d1YPG9PS0bNu2rSeVU76xOHfunExNTV3TMrT/KS/FVvQ/Ee2DSne0/ynXG12DlevJ1fS/q3rQKBaLIiJy512vFtdd+cjy8hK8J23HEPenzITjU/05iIcGMB7sy0Ocsj2InXQWD+g4RhlLlWWIgxDrUe7rg9iOAog7fgfidhvjTDZtlBlJBHGr1YC41FfEDyT4ft/HOjhdLotD51rIFyDO57AtXS8DcbvjYxWsLk+gNpbr+/iZMFn/JqPd8eVD/+7P1/rGteRyGf/6j/+bZFbPc/ro0/Ce+TNHII4isw1HpvZDPLXrAMTlURwsmSwe4/ihRyE+e/J5o4ywjtfeoXoUyyWI3TRetztfcw/Eu/dindtVHHciIodefBbiOMbrFoRtiA8fehHi2vICxDwGRETCAPvf0mIL4noTywgjrMPQUD/E5X4c6yIicVLHY4T4eru1PpaDIJTP/t0Xt6T/iaz3wXPnzkmptHIN4zh+uY98/UJTN3+D2Wo0jY8sLmEf6u8vQxwF2KeyWZzLnRTOq93mp1iwHubsv3VUq1XZsWPHlve/seGM2PZKO2SyOMfzdXIts4X4m8cwxrVI6BjL1RrEGTsFcc42y6h3cC6wc3htMylc1/N5nAtKJVyjKxWc8/ymOT/x3UZAayp1HXFcrHfKxXYp5bFtRUTGhsoQT8/OQtz0sS2LRXx/SPcizUbVKGNiAvuT5+H64TrrcRBG8qnPHdrSNfg//cnHJZtbuV48/2VT2De8jNmGiYN9YeM9hYiIS6Papu7p8ZSbmPeZCV3LwDLfsxErotcT7J9RgK9HXCkRo38ZdaJ6csyfj2OzzhG9id/Bx4w5jrrUm49BcWjUe/0CtJoN+dn3vumq+t9VPWhcnsBc11170OAbX8emDuOYDZXy8DNpGkQ8AaUcjN00xuKY1W/RMWwb65GhY3CfsYR6Mk3EXEcRkYisLjHdXHKZkuD7bbq8jphlcHtn6ZjZDA1yD2P+tfNqHjQc+gxPCivHvfY/o14uI5PLrU1yaZrEUjTJdXvQ4M9k6eEsRw9v/KCRoZujdNp86LT5oZHqwZ9xMxjnaNEt0CB2Y1pARSSXw3rFMfYVP8BrlE5jW3WoTyc8BkTEogXAdQOKqb0tHDe8YKa6jaME38NdKwrNOWWrfsa/XE6pVPqmf9Dwusy7QYgPlpfb6DKRjzefPPa+3h40LrPV/c+2rbUHDYceGrgu/PrK5/FvCd+E0TFs++Xj7mVc4TOO/bKxSw8Bxvu7lMkzQ8zv4QcN+wp1cMwyPKoXv8ehex4+D74p5jK7lWGUyceUrV2Ds7m85F7qQYPWtlSXB43YeNCgdqdR7VyDBw3+hH2FB43w6/VBg65P1OMHjctcTf9TM7iiKIqiKIqiKD3nqn7RuMzhw4fEWv0moDI/D68N0MOrNWg+zQ5F+O2slR2BuBEvQlynJ83Ewm9im238Fk1EpNnCn1WDCJ/A5ulr+oyLZYQhvt+xX/4b6ZV6oFwmJOmK1R6EmH9tDjokK3DNtquT9GkxQl3J5W8Z1sok2ZlFvw5Jl2+Fmm38ljoM6Nt5d/3cOwHpWraAWmVpra0GywPwWjI8irGL36iKiIxv3w1xRL8O2DFKQuImnmOb5CFJC7+lFRGZHMI+vX3bXoi37d0B8cQkyrVGRvA8PI++ASrjN8EiItumxvA99O1yu40yp8oSSpTm53HcuSmz/wnJMPoHSQ6RxzKWSeKVzuA4ihOz/3guHrO6XIHY76yP1fA69D9mK0zAX4t0msvG3xbPn4T43CF8z3IV58jXvvFNEJey3OfMtrXoG73r2frX69p7jrP2C0EU4vwV01pn0a+8IiId0iOyhIh/0SgXcb4p0S+ufg2vq4hI3ML5J+fhL6599Atsjq59gX7tnKc1PU5M6VSGfhkeHh6CeGkJ5yOWnU2M47ztGN/tioyM4Jrj0TFOnZuGOOVRW5bp12pTPSqDJO3mPt9obmjvaOt/UY2tlf9ETIWJT+qPxjLK7kREvDz9ukV9Q0g1wb9ihvTrRNQ2f+FvL+NalKK+EdEv9vUWroe2he8v5PGadPvFn2VJ/C3/lX594B8Wu/2iwW3BP4rwLxhcBv+i0e2XiJhqasivNpRxNb+QXOabc6VUFEVRFEVRFOWaog8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKo5Fx13e8ELIq7CBPxs5R1LWJiIwMo8Yxy74C3kaRtslr0xaJSReNWYp2BhLaqSaJ8Rh9tMUu7zCQIg1hN1ka75jSoR1WghDrmaP3u3ksI5MyfSChhVpYm9z/Ie/IQk1TyON51rtsURmQ5pc2C5FadV137QdXr8/rGUEgsrrbkd/BujabqAveuX/S+Hi9gW3oB3idBoawz7oePofv24dbzd7zmlcaZUzSFrl9fcMQBy62W470oy5vRkGa6lYD9aQiIh3y0uSyeK37y6g/3rP7RogPHcKtgcUyda+dDvaXvhJuV0ubnMly9RLEieD16aZBXVrC69OibSw3ykXD6Pp7NIydQ75B4POySUA8c+6U8ZlnH/kixEEL+4tXwP7SqqKHozSAawPrkUXMnaiuZ+tfr2vvufbaDo8WtUf/EHoBGy1zjvci9GSENL9YdF7jYzh3jA1jGaeOnzDKGHJxHh2bQA+ZHdKui7SOs19nkLaHTxxa40Wkj7wNOVrvHBvPc3gUPRy8m2StavqQwgTnxb4yljlJ9xq8OZvr4etpx1znY9oit1REr2ESrK/7vmz9Glxr1Nd2Igpo3ZmfQw/j+Qu4/a+IiJPhXRVxXkjbvPscft5nX1IXr16zhmtklnyOQqkYaj56SXwfC929ax/Ee/egz1JEJEs7bLFfwtihkHcBpT/E3bbk5c2xrrST1RXo5tGwuR5d/ChfCfqLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/ZnEfDisS2VjRbxSJ+dP8kau0Gs2YGSy9GTXx9EXXbUYzPPS3KY2CTDrxUxkzOIiIu+RsqtJczJzAeoH3Ca7Tfu085Mlpd9m1mfV2B9hoPfNzX2aZs0R7l5ogiswyXTBcd8iikSCRvx9h2nTruIy6cDVNE0nTJQtIVLjfWNfN+uPV7eIfttoSrukIrRH1qOoW63WXK8yIiMjiG/ontN2GOi5FtExBzdnUhfWgQmnk0Dl9EnWrz5Bx+xsY+f+S5ZyB+1UH0T3zLXa+CuJsOs0p64rNneD93zqKOut+hYfSznD13zCgjlSGPTwvHRbWK7e3SHvKlEn6+1UU/zrYLzmkDGc2/BuwRW5UVeqvhfeID8udMnztjfKbEuRHKqKufXcJ5eOHiBYhHt23HA3KyITEvucUmsi3kel37vmJhLaM054IYGUE/xewCzkUiIhlaa5aXKhCPDqGnLE2LQjaLXobJbei/EBHJG+sfDuyU4LyapjW72cL1ctsEnldipIcWSaXxmL6P8+zQIPnvSKff6eB8ViyZ+YpaHaxXbRnX1E4H16TBIRwD2Tyu+65leixcH8+j3cAyww3rfhRuvUfj0S8/Jqn0Sr+rk1/QFuwbrY45Sbcj7JNeCmOH7gEjGmZtyr8UdfEy5CkPVNbCds9Qn45oTW40cJ1//NmnIJ6dx/VVRGT3rl0QDw2hByibw/6UkEeRc1LE3TJwU9t0y4q+GRL2jYjpe365bOOG7+Rl0F80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVReo4+aCiKoiiKoiiK0nM2ZQYvpx1x7JVnkyyZyvoo6dxwCY1BIiJRjIYXtjI5LhkAbXwO6sRo0nHZ2S0iLploIjJwJQ4ec3a2gu+nRHS1JhohmxEah0REClk01wqZwhwyV3ICLCeN5qVWwzQZ5zwswyWTTruN9WpRIpuYrJSVullGpYntWyczfjtYb7sw2nozeKfVFGv1+hbICFkaQBPjHbe9wvj8tt2YeKdGyaqOnDwHcZWufb1SgXihYpotL86gQbBECfvExiR0n/zL/w2x94+xf77+7nvxdc/cKGBsDE3skqAxu0JG3CefehZilxIa5SlJlIhISJsH+PUKxDSsZJiSc0Y0bhYWTbO+LWiY4/Fd3pAgi5NFKV85V0rQN7eI/fz06bPGMTr0nmIGTa3NehXiw8+gwXJs5x6Iy2Nmwk02P7IX8hvVnL+RgcEB8VbXSTZj+m2c00cp2Z6ISC6D63TawTV3fJgSjAY4By7MYxK2YgkNzyJmotPYx3p6Ll4n28YL2WpiX+HkZnbG3CigQxuudHycZ9N0v1Kv4pyYL+Dcw+ZcEZGFRZzb0x4nHMb3+1SHWp3N02Z/9atYru/jPLdxo5ngOpjBlxtt8VaTGieUTc+ieww3Zd4D5siY7dgY80YBbbpLDOm78VoTTfwiIi1KzJu2sL8UEuwLnFjRS+MYadO90olzuJGFiMiZizMQl0u4+cC2KdyIZpiSa5b7cTMlt8tmGA7d214pQR/v98NJULt9PqEyYsMMnnT995XQXzQURVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6zqY8GkN9GXFXxdhFDzVkGdJN2o6p38pmUfvGGkNTQ4a6bj+kJCe+qdOOE/xbQtrwxEUNYM1HPV8U4Xk0yYvQzZtQowQvFxbxmB4lByrV8TyDGdSrt5bNZGbbhyi53Ahq/qwiJm3rLKFmul7HOi3XTI/G/DLqXE+fw2NGG8SMrN3bCtJpV9LpFd1n4KA2uJXF5I2nqnguIiJPP/gYxIsLqJm9MH0JYo+SJPJ17ISmX4e9MuPDOMRmZzDZWYkSTdUqqE8+euoUHm8cEwGJiHgeljFOSbQmKD47g16UI89hPDJOvhIROX2WPBUBaTlJhx25OLYzlJQr7Zr63VYbP1MqkS/JXT9GwsmLlK8C9j7gdbhw/jzEp85iLCJy7vhJiIeKOB6nhlDPfvEsjoPnHv8yxK98Q9koI0e65y4S9294bInXtP1+B+fwiDwBoW2uVZ02ri0umauqlUWILdLIJ+RduHDxolFGXwHn5hytudUOriusFU9lcD4LOFEqnaeIiEV+zpjvLRxO8ErzDy1nzZZZRiqNPo4UedtyGeyQaZrbl8njt1zBdhARKWSwj1vkodk4BnzyYW4FbT+WcNVzyusOD8ikS+LhRPBvFl0Xzr/nB9jHAyqymDOTNteq2Mer7N8hb1MqhdepmCIPrYOvN0Kzb3Ciwc48XttKBe818gW8Fx4fR5/lnl27jTIKvIZSvdm3SEu0JIJ9qVtSQB6LfJu30fcRJVf/+KCrtaIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/ZlEdjbCgnqdU9vEsp1AcWcqgXs5Ju+9wn9B7SvLdQW8f7TA8WUb+Yz2MuBRGR6jJqyftI511rY73OXMD31zuoY0uRjG0y1yV3h0fehoUKxJ0Ej+mRELGP9iK/58ZXGmVUL5JWtknHGELNaaeJ9azX8Zky7Zka+W1jWI+RkVGIL1XX9ZJhFMvZ502t9rUkmx2RbHZFJztbwf53/Bz6DF584Xnj8zZpSqMO9oVWDX0sDmmcWx30T1RqtN+7iNQaqMU8ff4QxPkstvGBPQfwAOT7eOiB+yDesWuXUeb+A/shHhzEcZImzXNfCbWedoh60kbH/P6h1URdaquC+9BHEWppM1nsX7xvfalLro40+bx4D/nmhrwmwXXQJ5uwxvVqTAObNBYkHPIfuuSzsXh/+yt9n4Tvj2NsW9bI15qmv+v8JdT2X6I4ijCnw9QI1unwl9E/NTI2bpSx/1V30V+wX9u8rz/byKgZki6Xgtekl+Rq39djLEnW8hWkUnj+rK8Ou2jkO21cq/qz6J3xbGwU18Zx3PZpfUyba7DfIW9lFefVFOnTWSNvkf8zIk18lnKBiIgENFcUS2WIMxmsp2VRvizKcRH4Zo4KizwZfEwhjXyH5szIxw6Yck1/QWkA8w/xPFdtbJgDr0MejZbfXsvh1QnwfDiPjdE+YkxnxhiMadBy3KD1NZM1B3Ga+0+A72lTbrXQovwUVGaKc1p0nU4phwjlhONj1pp4HsvH8D5hfsHMM1Uk/87UJPp0+ykXRyrN44Tm+dBcQ0Oa1jhvSbTBv9fpeo/fHf1FQ1EURVEURVGUnqMPGoqiKIqiKIqi9Bx90FAURVEURVEUpedsyqPRX8iu6d9cvwKvpUn/nqM9p0VEOi3e5xc1YuUyasxYc+pH+FwUBKZWOFdA3eP0HOokT5xBPfpcDevQJNnajixq7d71ulcYZU6NY5n/6wncU/6R4zMQhzFqWF2b9HuVOaOMZh3Po1gkj0XE+kh8PUX695xlejTCCE9++zbc27m4uK6z94NIvrjFHo1y/6Bkcyua4uPnjsJrF09jvomcZ+51vdxYgrhenYXYov21KzXUUVZa2N/ctNmGQ6OoRc+Sr2hy520Qb6PrcuqZRyB2LOwrQWTqcufmMWfKLbcchHjvPtyTexvlySi85naInz181iij00a9bcejPBqCnos4wb40MzMNcSqNemcRkb7+EfoLartbrXVt7deGR2PzuWSSK3k0DBEz72tOsZjtYHgyDM8Gx+YRNrJ9506Ic138NdUG5a2xsA7Pn8OxlnXx+ruUf+aFh+83yhicRM9Y/xT2aytkDyDt688aZdu8fl3+1JXrkEZIRERs2xZ7NWdEEmMlsnnUZLct00eSyqMnI2rQPGnhOj42im0eLtCJd8kllKf9/js0j/aNoQ9ho/eqG0OjOF916maZDq1nHvspSK/ebmGd0il83U6Z/ollaqsgwLnYofWzTX5QiXGuz3bxMLjkV2kHeK5z8+v3Bt1yel1r/CRZy79gUfkxrZ+xfRV+tDSNUcrrEtvYpi7dsQa+mS8r5WK7FrLYpk0f1/GQ5tAOdfEOzStp27xtdihHRUJzMN/rhpSfxqY8MDOLOF+KiEx3cJ0/fgbX6eFhzLE1MbEN4gLlt8l08Vcl5EcJEvJobLj/6LTN+++XQn/RUBRFURRFURSl5+iDhqIoiqIoiqIoPUcfNBRFURRFURRF6Tmb8mgM9w9IZnXv7tYi6rNs0nbWm+Yeuy2f9HYW6sGapHnkp6AW6RXL/aZW2I9QT3fyPGrDF6uUj8JF/Z5DGsFSBt8/4mI+ABGRzCJqN/eVxiC+OIDHvFRB/V2nief11FH0H4iI2LTBcZCnc+9DLa2QjrCvDz0zxdgUGbdpL/LExzwRO4fzG9679Rr5U6eekPSqrvXwiePw2vTFExBHlBNDRKTYh/rkA/t2QnzzwZshvjiH+s8zc3jM4TFqcxHZsQfzXBQH0XdwaQmPkcyjt+Qs6S7nKqjLPHijUaR82370ZDTqWO+YbB2JT3r4L6EvZN+BVxhljE6WIf7SY1+EeOYS9hX2ULRbWObSkjmOsgUsI6ZcBY3metuF12EPeZPNf09j5HYg2IMhNE7jBM876KKRN/ISGIWyd4Ffxnm5vx+1v/d+yxuMMp97+jDEp0+dgTii63XcQd9aZif6waIjx8wy7n8I4le/A7X72Rzq6sm2xlaVrm6Z8Aq+m8v+luvV+y7OV9fWKO4r+Q6OlwLNdyIibcoPUXBQpz05jj7JdA5byUGbm/RT/iwRkXIOj1kcw/7TISPMUfJvlcu4tnXIW9dmI6WIeHQeQZXmnw6u0TH1cYdyL9Tr5vwUkh2A7zWGy7jGDpSwLY/V0Ls5SHkPRIyhJyXy3cTBus7+euTRiJL4JXPIRORDaHdpQ5dMFjxGXRvnM86z4XmU56XbLSx5RXjSLaTQzxPSNB5THNDxwsicc23ypCV0vxbRjBE5NM/wGt1lGrLIhxQGWEZ1GsfJmYunIU6ncIzkcqaPmnOfpGkt8TbkX/M7pj/mpdBfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwa5cEhya7mDugv0L7TNurHKlUSc4pI0MC9q23KCRALas4Sys1RKJAOU8x9gA+dRH9Do4Oa+EyG9tdOYRnZPOrW+h3UHT5x/JJRZujjMTp96NEY7sd6WpRzIAjR79Lssjd0o0k5RUKsl0X+FRYge7SnNe+XLCLikX4yJF1rskGTmkRbv5H8lx/6grirfcIdPQCv7Tl4C8RZ39SRHrxxH8QH9k9BHLVpL2wbr0ND5iF2PbP/OU4Z4iDE/taoLULcR16XkNr17CyOo0zhglFmH2mBd+/ZCTHv6d2q4L71hx99Gt/fMtvu5re8FeJbbsUcBq3H0aNx4vhpiHOkn+8rDxplsFC1SnNIp7Ne768JjwYLiK9i23gjLwZ5AvgQIeUjOXYcvQutlulFuuEgenbSaezXNpsViDjB98e0TNzz2tcZnzl7Cvvlf/3D/wpxSB6ds3MVrGMOx8m+AfM7sCMPPA7xMOXRuOG1d0HcpP3xPRJfp7q0w2IT8yx1fJwDL3tNajVTf74VdMJYLsu7FxdxLsk1cR0Z4DVBRDy6lpkC+jjaTRzHdfZDUJM5oemX6NSwzYaLOPaPHENfWiGDa24hi/cWHdKC949jHg4RESsi/XoT65ChO51aG+ePNOUUmLmEvhEREYmxXoW+MsTtFs6rYYCexyzlTCrmTX/LIuUcaXfwmhY35AnjPB5bQSfw1zJGWDR+YvKTGX4zEQnpWrY62GYe+Scc8j6kXXw96ZIrxuL5izwWCZkW2a7apHwoPt2X2l3unXxqC49z+NjksbXJK0x1sB2zDLHIF01TJLd2TPOdT7ljqo0u/Yf9Jx38zMZrHnWZX14K/UVDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTZnCxXZFV07fleS/71nTGfD0naDxz6TnHJndLQCacdLYP4vkZ05DXnEcD6e4BNHmRt0oyZP4+sGcS60QfCB3zvNi06jpoKCym8LwH+/dAvGffdohPnf2yUcbho2i2TLlk1E7QtBOGeGltSkzIpisR0zQVk/PP2mDMsqytf0adu7AgzqpJ6vbb/hG8lk5j8q6BLl6q8Qk04S9WsP+cO47mSj9Gg6ptoXnKcU0jWpTgdRG6DhGZ4ZKIk2xhcquFOpp97ZSZhCs2THec9A3DQgbbYefENogznExIRGzB/nXLzZiYsFwuQ/yJ1t9DPHMRx8jkCCZoExGJyOzm0WYQ1eq6UXUlIaCZ2HIr4XbnvHjdzJAJGQ2NYUSmwnMXMIHj33z6kxBXqzjXiIjcM48JQb/19W+EOJ3Gfs3nwb065D5aLArz9ne+HeLjR/Da/MPffhbiKiV0PHwBE/j1W2i8FRHJtLGxvvQZ7GPuIJqO7dEyxI0KtpXHmSxF5GL1PMTLNfxMu73SR1vNq09W1UuG+wviuiuTW9jGMVks4HVNuiRzdFxsw2wW1wXusk0y8fuU3SzNLmsROXhgL8QzM7iBSqeDhQwN49wdRmiijgXXqlzBnAP9JvZRJ0uJBsl821jE67pMmwD0lcxkwHXakCWKsZ5puicKyCg/uR3nWV5fRUSWqnhNeU0uD6y3lR1sfdLcVrst9up84LIbOaa+wInzRKTVwL6QSmGbDoziBi1ZGqI2zZ9O1jTUJzZel+UlTHrbquOGBzt24cYytQD719IS9o102kx0F5Ax2hI2nNPAokvHr3fbaycleF42bVQUBtifIs48yEkFO+ZGInHlHMQLFzDJpCTrx+C++XLoLxqKoiiKoiiKovQcfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1MejXY7XEtSZQWsUUW9WKNRFcYP8LkmtNE/UW+iZr5K8eQ2rG4Smh6NHUOoU9szgbrJZhtfn9x/G8SpBHXiS8uUdKdborEFNARsGxuHuNJALdzuGzBxXKk/RzEm3BIRWZrDc11aJr0xafftBPW6ASep6SKvi0jzSTn+QHPeTX9+rcnm+8VdTSroUfGVCurS0wNl4/PNEE+6TX6dbD9qz9MxNQAleUq6jJ52gAmIMlnyylio5YxtSko5iN6FVIK+ESeLyflERJIUJSiysA5WRH3DwTI9ShyVLZi617CD/W/hAmptB/Oos37n294C8ePPnIa43jL14+3OHMSdFs4x5WJ57d++j+Py+kACYtLALpE2WERkeQmvp+VgH5uZw378yOOPQfzEC89AXF2sGGV0SC980y03QzwyjD4gh/pDtYb9p1LBMnZOoY5aRGRiagTi9/zID0F87sIJiB995lmscwP78LHz6NkQEcmN4XsWnn8e4ub/wffvee0dEC/VsQ83m+Ya1bEqEPsBeq4uJyVrt8iLtUXk0454qx6Ng3vQ25fN4TrC41xEZObcRYjDEM8jX8DrWKnjJOlYODdYXXwGtWVs57lZTHQaGEMX1+h6nXwKCX6g2TS15fUq1rOUw7ncJ317YpHWn/wGpS4+pGwO2/OyV+YyxSLezzj2yyeOO3UW9fAiIhZ5KVOUuK22ISljcB08GlEUrbcdrcH9afRVlfKml6FFbSi0Hnp1nPMz5AkaGcH+2c6aSXP9kBMlYj2cHNYzR36cch7v38aGeA4wb57adD/UpPfMzOF6GTQqEHvUx11K4iwi4sTYVkGA48x18DxjSmjN9xrSMu+fq9OnIe4sYb3r9fW22Mw9oP6ioSiKoiiKoihKz9EHDUVRFEVRFEVReo4+aCiKoiiKoiiK0nM25dGIrEiiVR0y7wfPeq1sxtwHvVBEDdn0HOrxTp1HjbZLQvzUpWmI25fw/SIi+0ZQ7/mmN6Af4sQF1EgXJ1FbPjQ4BvEsaevKZXMPbzvGMlOkzZydwxwYbqYC8VwFdbMXLqJGVUTE87DtyiXUALZa2FYJ7ZdukeEi7rKHvE17+FukW+22t/NWMrZth3jeioaV69Zuo976UtXs2qkyatODkPTGtA96i7TCQYJlui76YEREQgf/xvrPkcEKxMkijgGfdLdWzPvem+OKupvECR4jivBa2x5+IHGwjHrD1G5apDlNU/tXaZxkcwMQf8vdt0J85MQZo4znX0Rdfr2KWuyUt645vR765BU6q/91GUMkV1+uojZdROSBhx+E+Mw05m2Yr1YgXqJrYZOfJtMx56PZBSz3gYcfgHjnTtzPn/NqXKB5OPBRG9xqYh1FROo1/BulQJGDr9oN8dPHn4PYr+Hkcr5i+idyKaznVB9qkE89/iTETpryNE1gn1wO0YsiImKk30mwvTudlWvfuT5pNKTgOeKtjt98Dq8950bqK+P5iohQeglZWkAf0QuHMP9JSPNPOoW5Sgbypmds+gKudwvz2B/bIV63Knk6jP3+SRJfqWBOHhERsiWJ38E/5HJ4ZQcGMScX54XqhOb6mMTYR1ttyokkqOUPKY/G5b5zmajLGpzNmeN5I6633h+T6/E9cejLZXNGH/lgyuS/uHARcwCJiLRoDHc4r9AMrgu7BtGTMbIN85wdnsZ7QhGRhLyVuQZep7489r/nzqHvrTCG604hjePq1NEXjTIjGgflfbjeFSYwt0zjzCGIHcrtUUrMe8BmvYJxDf18KQ/HZrWNfT5bxnvdQZ4MRKROXiZe0+C+K0lEIrMPd0N/0VAURVEURVEUpefog4aiKIqiKIqiKD1HHzQURVEURVEURek5m/Jo9PXlJZtZ0QiGLmrr6rTfdhKY2q3lGuZ+OHOW9+hFXVo2g89BF0+hjm00Y+73Pzm5A+LyxC6IvRoJPjOov5u67S58eQb1ptnQ9IVEgufeaGA8nkNtnB9hHaw8auum8phLQUSkWEbvSG0B9eyzl1BrG1h4Xm2f9n23TcNFPo3aRb+F12OjBjjqsn/6tSaxHEmsFd0ha/SbNdT5prt4GWpV9Of4bWyTZhWP4dEpFvOoLx3uNzXQpQHU2A6XsR6Ri9rgVhrPY3EHXvtOhP4dCUxdeRRSbg7SqEY29TfyaJQHUF8aR13KoPbu68PzSlnYnyqk2U8C7EuvOIj9WUSkXMT2/eQn/x7iuUvrWu+wi4Z6Kzh05DkpFFbGq+viGGMvwxLlnxARqdRxDjx7EeeXvhHM0zNA7Tw4hHPJ3AnqHyJy6Hn0P3z2Hz6LZZTwmA7lA+j4eC39Ds5nn/k7c493j76y4rwauSFsq9tecQPETz14BOKmmHvVH10gHxDlh+kPUTN+/EtPQFwZxvlt0TbL8Hx8T8jzTLO5+vfrk8dlYnRY0qmVZZs1/v1lHMeOZThOxBvC94wNY3/73BfuhziOaa4oUt6Xi2ZfGO3HNiz34fpWmUXN/PwsrmXlfvS15cmX1Eevi4gU8zgXF/twns0XsP+FlKPn5HH0BjiueW/RJN+HT+Pd7+D1cMj7ZlGfzmZMj19E63ZA/SzobMyjsfVzoB0Fa/m1xgp4XS8toWcgKJr3CC7lJ7Gpj4YB+m923HETxEvUhn6/mavDsSh3VQn7Y4XW+Rp5bWLyoHXatPaVzNwd5+jetTGH92M7ymWIJw6gh6PyIt1DXjA9jEuX8G/VBpYRUc6R5Ra2f7Yf147iNoxFRELKLcT5guwNhtDNpFLTXzQURVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6zqY8GvXlRQnbKxpC12c9Oz2zmPJQcR38Y5P0yv1F1NyWab/j1hLqx0YmUF8qIjJ56+shfv486iiPHsf4nnHUdlYq+ProntsgtsXUr/sd9G2UaePv6ixq6bI+6i7HB6gOkand9G5FbW2Lcm889OlPQHz+HNbJoT3WjQ2SRYRScUhAz6H2Br1o+3rkMQj9tWq7MV4n2lJftvWZ53fD7jLEBcr14lAfblBOg3YT+2s2b+q0D+zDa7ltxxTEtoceojrp+LeNj+PxTqHutTRg6kMHSLPskr6Ytn+XhMZmJo8617BtXlu29Hicx4T2kB8cQv1uvYnjplFBXbaIyOQwakbf9Y5vh/jjn/qHtX9frzwajz7xmGSzK9egRXk+8hmcv97+9ncanw8THNtPPHcY4r4ijfMYtbsTI6MQB5fMhA7LDWzr5jH0P/RTfol8H9a7QFreTB7ns76yObn3Ub6YUgmvf7aAfewNb3w11nkex9bzz580yogCHNNnK9g2HuXBcWewj9SWMA6LXXLSZDHXzoVzOM9WV695fJX7x/eaJIklWV1f0jSnsycgaGD/FBFJO9iGCRnRIsqbYdtYhvHNZGzOgTt2oC9yiMb1FOWJSlOeghL1R4fqPDuLviYRkXtejd7KsQn0uoUJ9pXqAq6PS/PoDViomG3nOjgJDg+hDySmiZb7SB95GpY4f4iIJJTvym9hvTd65aLr4FPrLxbFWR1nQwX0W1QW0UM1kOF7DpE09Tf2QI3sOQDx7nHM+fPCWZwXymnTSxNSUpWRsTLENq1NDco5ZhfxmEtzuFbtGME1XUSkmSJ/XoT9Z3EJ+5s9vh3iqRtfA/GF87guiIi0WzivezyWKdGZQ2OzU8F7iTkx+19I67RNc8pXOu3pLxqKoiiKoiiKovQcfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1MeDdsSuSwLiyjHQkKaf1tMDXVEeyYvkbyzWkWNWUL7Vo+TdvNV3/qtRhlTB1Dr9n8+8v9APEY5KxwfNc4XTp7A9+++EeLM4F6jzHyCWrfmImrhsjHqrn3S2s3XMC4Po8ZVRGRwbCfErTpqom3aWjxKobbTIu1nQDpGERGLNJ9WgnEYrneXINrEJso94rV3vUKyq76K3Teid2b6Aup2JyfMHBf79+2BeGwY9/p3EmyjGuWC6FAOC25TEZFCnvTuBfRUOCnUhXvkNWk1UMt5x83o6di5f6dRZkBazIS+PwhjHIsJaTsdD6eBoG1e25i0tDbpWq0MtQW93qH94F3H1O9GfgXiYdLS3vu6V639u9XuyF994gvGMa41p8+clvRq/p7lWdR179u1D+JsFvuCiMj0NM4NZ06dhbiQx/5h9LkqzletShevCvXLvXt2Q7xnGLXlRfL4zM6Sd24Ar+X4NvO8alWsZ4rTFVE+hhLV4dveinP5IvnxREQunce2m+9gIbll8vCRb8SlXC+TRXOOyI9ifpcLp09D7DdX5vo4NnNwbAXnL1wQbzXvCc81tRrqwrvp133BcRhRLpgc5TnwW6ShH8a1LG2bHqE9uyfxPVQP26McPOTRyGbJF0L9OWmZ2vJOFe9Hgj6s1+A49jc7xNd3bEPdfTpj9r9qowJxKoXzpkv5GzjXCueriTrmGuyQzysJ0ftW2JAvxPdDETlkHONasm20X7zUyvX87u94I7x25uROiGttvCYiIp02nnPYwf61cwK9Cwn5XpIhHJ/LXe5jGk0sd2oI1/mQPLR1ynuWUH6TQkL5aWLTqDBK+Y4as7iO1y/g/BjQ3JUfxf43cdPrjDLiAOfl2Wm8V23WaVxQPUt57H+umGM3oSeCoInH2Hifn2wikYb+oqEoiqIoiqIoSs/RBw1FURRFURRFUXqOPmgoiqIoiqIoitJzNuXRsJKV/0REItIfWrSvvtvlESZp0WdI5jowiHutj+VQv3fHK/dDfPAe9GOIiCzN0h7dIeradk+hFi6mSoyN4J7fnFOgWTE1gX6I7wla2KyRoNb8xIXzED/3/OMQ3/Mas4zBMcwZUq2hXtnDppOhnaj1jOn6RL6pMwxJM7o8V4G4U1svpBNs/R7et9+0X/KruuSbbkePRutm9F/k+8i0IiKsqk4s8hWRb2Agj3rQhPp0t6d01m7zPuFC46bTQZ3knr2oUc2m8Dq2GtifV+pFw5i0wglp02PSVkbUDrwfvIiI38J6RjHWy3bZo4WtU1tAjeqZU+eMMl577+0QNwPUnOY2+ECsxPTHbAXN6rKEnRWNcrONbZLOoR9nuWZeqzPnTkNcpn4akV7YaqNG++LMcYyn540yLBs/84+/57shjuuLEH/+wfuwjs+i32mwDzX2M8fMtp8kbfVygHvqi4fz1cAg5gO55cDNEPvvMpem/+eP/xTiVg3barpCmnDKJ9PxSZs9j/mNREQm6HqkyC8wNFIWEZEoiuQ82mu2hGbLF291cY3JF+mTx25g2PSgxOTXardxPtq2DfMWvPg85mDxaJyPj+F6KSIyTD4Oh9ZYSnciqTRe6xyNI86jIS2cl0VEWlX0VCzOYX9LbOwrWfKUcZmlojkHVps4bpII2y5LeZks6n/siyxladEWkYjat5TDY3gbZfZdcpVda4pOW1LOyvW8+w4c83fdhN6cWhPnIRGRgBbRIMR2DpvkQaP5b5ePZTQ75n1IvYHH8MiDuER9JbML27jVwTKTMuXWmcHcOiIix8hrd2M/+kLOzmHfEfKsRRn0RhV23GGU8bo9OyFePIcejSNPPgHx7AyO3byFnkLpmLli2hHWy6L7GXdDB0ySRDqRmUenG/qLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpszgcRhJ7Kw8m7Qo4UiKEuG5rpmQy7HRDLV3DE1jmSw+9+zcgca02+7FpE7jB241ynj6kY9AvH0bljF20y0Qp4bRROzmMLFPk5LOtKpmsqBL02hsXbqEZu+Ikm5li2g8GxrCtjo3/ZRRxug4mqBCSkqTtNDAZDXQ+BMlaJBig7CISJYSJ6XGMK6m141qbX/rzbiZfF6yq2bwAiXVyeeoK7umU449zhabwdkUTYl94oDiLglreFOEkCzonOMvsfD9hTIaOMMIPx/FXRyAMSW0EjTIccIriTDmpF2JdEnEE+LYtSgZUJrq5UV4Xvk2vp5cMpMFzZ1EA/HUAdy4Yd7e0OftrU8YKSLi+22R1fZtkpnu+Ck0av/Vx/+38fkH778fYja1X6LEY3NncG7xaEeDoEvyqNQYzmEPffEBiDtVNJC/eOwoxI1LaBiuzGEZ5UGcv0RE5mbwM9VlbJv+Mhpl/QjLvO++JyHOlnDzCxGRfkq8NR+gmbtJyb8ukFk8SZMBeNk0QzpkIi4PYls6zso8EwSBPPPEc8bnrzW244rtrIwlTn6WNszvphk3ncFxadOcFlEC29pSBeJmHY20u7bj+ikikqV2LuTQ6NrXj30hCCmJYITn5ThY56EhPJ6IyOws1vsimW+feP5ZiPfSphuzc3he0xcx4ZqISCjYnuUS1sOjuT6dxnES0prUaWP/FDGmcskNlCGu1tfnh+g6zIGNpYr4q27+86eeh9emJjHR8OQ4bvggIuJSX4hp45LqPM5NlQrexwwO4LzQaJlm5GYL+0+jjuO8VscxfYASmjYa+P42bYQynMV7DxERr4P1uPPV90C82MTXT8/gRiG+jX0lapl9Q/px44WJW7G9h2/9NojDJVxPFw89CvGp579sFDF/AudlO4VtYbvrfTxJEhFfzeCKoiiKoiiKolwn9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE15NDzHFW9Vo7pUQ99B1EZxYTaHOkwREYc0hSOUoO/cxQrEe+54K8RTt2As0i9MUENNWV8R9XjD+18BccNFTfwLT6FurdPC41WrWEcRkfkLmKzFIY1pJoPNPLkL/Ra37t8LcehgMjQREc8pY5xCbZxLes/mGUy6FVMyp7DLI2bdQQ1pbhDrMTqxro9stbc+YV+h1C/FwooXKKHkek1KNph0TH1yp/Py2k2fEip1SHcZhqjBDQJTn8hJmZpNHCfNBnp8QkqIUxzA/lrsK0NcLmLyIBGRTAq12VFMCR8t1K7bgnGRPEMLs2bCyHYLvQNxjGPPEqxDHGH7l4qoa92x3dTvtpp4PRJKLtZXXO+PnnMdslWJSKm/JOn0yrkGNIaqpF9/8emnjc9fOnUKYpum4Bz5ZVI2tmvi47WxxfRKTZGfa6CI12qJkmLt3nkA4jMR6qIri+iFiNJlo8xLlGiw2cT5obKIemGLrl+bkklVmpiMSkTETuGaEjvUNik8ZpM08xGN33zKXKMKfZRsjvwBcbJyXsFVapN7zejgqKRWE5ClPaxbLo3tkc2ZfSOktckj41opg2NuzySO0zKt6xOrCQw3UkjjdSjlcX5p23iMVIz1ri5jHTJ5fL+XM/2fM3M4P51bxHn3yHHsfzOz2F+ry/j5IKDkjyJy48FxiAsZrEfECerIt5aQpy+TMs8jonXacnB+CKOw67+3ir5MTlKr601tYQZeu0hr2dCY2f/66HzyxTK9AT0cjoXjrEhDtq9g+nUSmjNDWpMPvXgY4uFh9D7kcujfadJ9wm07cX4VEXn9KzHBXosSETbpUu3bhtf50gLOydMzlOBPRGYoye3ZCMtok/8lW0aPY/lmvH9+xYG7jTImT6GX6dmHPw3x3Mz6+pUksYiYnuVu6C8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTHg2/3RF7dd/2XBo/amVoH33b1A8mpCnMFvAz3/n93wnxPd/xJohLQ6gXvXTykFGGQ+VWarhf8dzpIxBP11Ard9/HPw5xIYs6ynbH1G6OjaKuvlREb8Op86it86mOAxM7Id5/y51GGRKhxn2xgrk6muSRWWphGVaC16vdog35RaROGtKkjjrWg+UNnzdl/NecT336s5LJrOh9Iw9zAyzRntH1ZdyPW8RMvcCejUuX8BgR6ZcHhnEf//4hc6//NGlQG4sViI8ewz67cV90EZFtu3ZA7HjY/0pFs8xdu1BTOrVtDF/fTZp92ue+SFrjuK9klCGkqQ9oLDsufmfhUBmjO9FbkimZe5EHCY5FkuDLwMB6vdJpU9+8FeT7S5JZzeHi0jj3F1DLO38Ux72IyLYCzhUW6YlrtH96m+YKK4t697RlelXmLlEOgUefgXi0iFreBcqVsEz7xtdpqmjNoxdltWYQuXTxsh7piclrMlfBOkS2eV45FwXanLPGzvBnqOIJ6r0bDTOXS7WKf+sfLNMhV8+zSx6irSCxbUlWzzuTRY+jR2PQS5vfI7Zr6CMIAhxzfUUc+694BY5bvo6eR4NURFyXPWN0HWzs4+kUzpmFAvmUaC5JYvO2xaO+8OJhXOcblMdAIhyr7MdLOeb8Yts4ZyWcd8nGtqzSOKo18bx5jIiI+D6O97CDn/E3eA/9YOt9kmP9fWseNYt8SouXMAfNM89iXiERkaeex+syOom50l73+m+BeHIY58v2EnpvHNf0WQnNqa6L/WX7BPqwsrT+pVPYl0opHGdSNK9bEOExa5Tfo0W5qw4dOw3xUgfzttyxG30jIiL1ETyPUxfRI3PoDHpPnjmJ7V8jb91Qic5LRG4cxXuFV34L5uZ46pHPrv07ikKpdbnP6ob+oqEoiqIoiqIoSs/RBw1FURRFURRFUXqOPmgoiqIoiqIoitJzNuXRiBNf4mRVbxnTfs+0R3mYmPuMW6RrzaRJD3onehPSpE9/8emnIF6aNvda75CmsbaEeuVzx1+EuJ7QHt0Rfr7g0p7gGTPHxXA/6ggvXkLtXEj5Fpo12vP7FObhEHnBKKNex/2KMy62ZZhG/8BCiG2bJW13jjekFpGsixrUWhO12OGGvAZhvPX60C888Ki4q3kGylO4938SYZs+9fAXjM/vmMJ9pYcG0e9w4TxdNzrH3EAZYt82fS6XyI/zprtwr+pX3HoTxE3qr7ZHOsyzZyA+eszs8889j+Oi3FeA+Hu+97sgfu1N+yFOJfh9w9Q46mZFRHzyaFg26ZPJ3xMItp3tYpwuY38UEcmSzjp2aM//Df92NzVz9Y7YsyVe1fAmpLtNUc4Fr4uGensJ8/aE5EWoka7bKeG1tFPYbq1L6EETEelUUMdcW8C5Yz7GelY6+P6dd9wK8cwc5tGoLJllFgo4L7YpJ0rgUS6FDmrRWwGOJds29+DP0LkntMd+RJ4MhzqJTXvbx+wdEJHZuQrElNZA3NRKvbrl0NkK/GC93WoNvG52ETXXrYq5x30QYr1zWcpbQPr2ygJe6w55NJbrps+F9eoJXWvPxWvr0RhoUg4emkrEb5k5ktgzOjNzEeJOgn2n45Ang3wljuH3MXPDhOQzSlM+o+U2ts3MAuaKSaRLLqAE28aysMzshvN0roNN6PlnnxBvdVwlC7g29Q2ir+CJF9AzICJymLwJr/1W9OH+2Z//KcTveNO9EPdn6B4ya+bRcD0aB20cJ8ODeK8Up3HuWuqSg2sjlmN+Px/Qd/YWzXfHz6Cn9vf/ze9DPD+L96mvfg2et4jI27/v/4J4ZAzbOx9if5sIsS+9UMH5Lu7io56l+419lO9q94Eb1/4dBr6cePEJ4xjd0F80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVRes4mlc6xXN6bPA5Rn8i6uIjFrSLiC2rCRvtQy/l3n/gkxAOj6FUYIe243zS1wp6HPoNCHr0KLulB8+QDGRtB3X6rhrrKrGPu/78wh3sJBz6eezGDfgifcicce+pxiC8ePmqU0SH9nXh4HrzvfH6KvCR5vF52Gr0BIiKZGK9Pv2C9D960a+3fzVYgIrg//7XmXd/7A5Jd3Ts+PbIPXmvW0F9x7DmzbuNj2H9s8gRkM9hX/BjbfP/NWGb/OGo9RUSaQ9in3/4db4aYvTEN8mjEJE0PE9RVtkPzus2SvvPMqWksM4fnNXMeNfenXzgGsd02yzg5g3uk3/Xtr4R4x84JiDnPhp2hvcc9c36wqP8J6ZNT1npbpLzrk8dgebku7dX8K50mjqm8j2NweAzbRERk4Qy24/HTqImdC7DtBwbQ02HTXNKIcX4SEYkC7ERhEzXH7Q5pzck7NzeD81mjjhrnJDDbPpfG+d+nfCBWGufNsI11SuVxvkoi0z/Rprw3MSXG8WlNSlOOh1SG1oYc+l9ERLL0t4DO9fKckYSmh2QrWKgsi7fqG5ygtYo9G2FsjuOBQexPtSp9JsS4Qz4ESi0kh4+fMsqwLbx27F3aTnOFXcDr0m5g/4yoDqFv+kLSVAb7iI5ewHG2a3gc4oEi+izdATOXUKOBvo6lEMtwKR8I58RZojhOzO95Lbol8yycExvN65tHY365Je6qX++wh7kfnFlcV85eRJ+MiMi3vOkNEP/LX/r/Qfzv/8P/H+JP/c0nIL5hEvu8lzJ9LnnKBRNF2E4DfTgGhgfQh8B5N1LkvbEt87a5TuudTzlt/tMffgTiFw8/BzHPVX/1if9plDF14BaIb9mHXstsGn0hpQTrNEHTXeia/a9BvsPEx3l6x+R6zi7/Cl6WjegvGoqiKIqiKIqi9Bx90FAURVEURVEUpefog4aiKIqiKIqiKD1nc3k0YkviVRF5ivJLZFzS1HbZBz1xUIcb+6h5nJ9HnX19DuNsgHkd4i77UA/0o4avPIF7DYe0R/eFaSwjEdbkYhP5obn3sGOhzyOfQb0ypRgRh/9AGunIN70nNon3q03UZvtp1K0WJ/A8G9kKxLUYda8iIu0GPncOlnZDPLRBE9xomJ+/1qQ9W9KrOQyOHn4eXqsu03VMTB15QFrfeh33+rcsbONMGq9r0MR96ZfnzDIuncU8Gn/7d38L8VKNjlHHa10sob60rx/1pPmS6RE6fx49GSNDkxBnSugleeBTWKfFY89CHPlmjoDjM5ewzAaex76D6F/pK+EY6KNcM9mcmUejL4/t7dFe9rnc+rn7PIa2irYnkqzWkySqoYU620aXbfIvWvjHi3QedZ/Oi/IYOB5q6JtdckEkNFe0aM5KEvK+kD74AnnOQvJLWGLO7XNL5BWhsZSQTtrLotekRDrobh4/HtMOaYyzgv3H5rwmdJ4WlSkiklB78p75l/XZnBNqq7gwMyPO6trqkU+PvQvbto0Zn2+QX6daZ48GtTHnuCAfzKHjJ40y2Ac5fQ61+kMD6GPr6ytDfOzYcYh5Tf7Of4S5iURE0gnOm/1lzK+QreKctlCpQBzTuOO2FRGp1nFOa3Rw/WhS+9sp8p4E3LfM2y/O7bJE68PQBo9flGy9T2hi+27xVn2tkeAaEJC/LJU3PVDj23BtSmgcbZvAXFf/8Nf/G+LaDPadXNZcD9NZzhGG7ZR2cZ5gr1Yui9eZ58dMysxBlpD/a66FbfPCIczf9uY3Y/6Q215xG8R/9F/R0yEi8sgXcd3ePVbGeuawz87P4D3RM8fQ++vlzfMYLeExoxblcUmtz4exdfVrsP6ioSiKoiiKoihKz9EHDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6zKTO4baXXzHCZNBpJEkrGlydDjYhIvjgEcZPMQ4NFNN24dEx/GQ2psW2a+ZoeGlRGR3dBHJMh+MCtaD56+AufwzITNMt5lmnAapGhrkQJY1KUAMYhE02dEqSdumgm4apUsC06FhrRhvfjM+NkmZIEJthWS/NYZxGRVJtM7ZQcp9VcNwa1WlufLKi2eEnC1sp5ff6vPwWvnZs5D7EdmEmdnn0WNxNgw2rIRn+6Tp/95OchTnmmEe0Vt98BsZ9CU2K1g+1+8iwmcFtYOISfb2MdpmdOG2WeOo2feeXtd0L8k//fD0D82JcegThcxkRL1S6JeFpkyDz5OJreH3gCDZ95F82XnFjJSZttVyQz+NSOnRC/83v+ydq/m83rY8Z1LVfc1c0fAjIn11vYbotV6m8iskgJkEIP54YkxHZqc+I7SloXJKYhz+bknX04HzkOXQuanziPmGHCdkyjLP/Nps1AKDemxPQH26iTeV5RjHNOwmUYdcAyeLMHsczv2WIqg6eEy3NE1GVTkK0gTBK5fDkWltEoXKINFtjoLWJea95QpdHCz/B1SyiJaTFr9oXZRTzG089hsrx8FhO9ddq8+QQl/KNNIQ4dw+OJiIzm8N6C55KxMXx94QwaZS0X+8bsHNZRRGRqCtfDiDZd6JCRvkkbZoT0/ig216hiCY3JPmVIbGwwrQfXYUOMUCKxVr+fjqhuKUramTdzHhp98tIstvP8It77nJ/BtSkJsa/wfaiISECJDHmlSNOcm6dNXxza6CibwXGVyZj3trGD1/bsHN6rChn33/Vd3wXxPffcA/G5c3g/IyLyV5/4G4ifemYHxFEb14alSzg/+AsXIHYjvDcREWmGmEz65BKu87n0+n1kGJibxrwU+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mUR8NzLUmtJklqko7byVAyPsfUYDdJN+94qJ5LUyIUz8NjpnKY9KuvhK+LiMyQNq45iR6MkW17Ib4wi8mpbnrVayGuz2EytJNHXzDKbNQrELsOnmcfaaQt0qBevIBlnD3TJWFfGs+1NIo6weEBKoN8H9Yifr5/ybz0kyOYHG6qjG13/MV1XWvL0NVee8ZGRiWXWzmPfTvRe5NQm7q2qV91LNZ043N2wppT6tPioVZzYgKTD4mIvOEtb4G4mKPEdRlMOPTi889AfPT4CYjHJndC3GYBvYg45Id6/uhhLOMoJurJ7TwI8fQ01qm/jLGIyAglN8sVcKwuzqBueuECJt2am8dx2Y66JFQkDfPFCvbRe960/nqrtfXJqkREGrWGBKsJDatV9Ek16jjuGw0cgyKGLUhKZRy36S4JqODzJJrPuqZPzaNEYeyf8EijzLr9iJKGmckvzWvHb3FY3M9JSSP2QnBSwS79g94TCSfww/N02XtCx8xkzKSRrN9OyLORXvUWsf9jqygPDIi7ej1LtP5lqO6LVfQIiIhkaa4IfDw/nxIluh6eZyqN/c2PzHVgdhHLbYd4jIFiGeKp3eifCAK8ztVaBeLT503/RGqYkjUmeIxCjpI1juAcV8riOKxXTH/V6TOnId6zfzvEPunw/YjGPy1J7OEQEdlO63g2g/XutNZ1+FGy9T7JheXFtXEVhHh+Lo2JpEvSzaeexUS7t9x2J73+HMQBfRfuu+Q9DUyP0MWLeE/X7lAiQZoXODcjryxeihLJeua9U5Sw7xbXgoGhUYiHBtHvUyM/39i4mWxzcQn7/d///achblMC4oUF9Fs0yJPmdllrHOrD/aOY8HpkdL1em/Gp6S8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTHo2RQVtymZVnk2AB9zduRahRa6BcTEREEpv0n6SVK5VQt5byUBvXaqCOLdtFKyc+/u3xhx+GePcB1IqfP4/7afP+7zneY7mL9ySbRa0sa7VbLYzDEPc7LpBW7p7b9xtlZCg3R+iQXjnA/alb51CXaNdQjzySM/dQvn3/TfieMuoKn7h4au3fbX/r95Ffml+SdnbFG/SaV+O+0/e8/vUQp9OmdtMlTwbrrGPSWTq0xzzrmVu+uU/9wvlTEC+Sl2VxfhHik+TJmJ7F/lgYmcAC0qau3Eqh7toP0T/12fsfhHjHnlsg3jaAXpOMbY6rHOUM6bRRX3yyit6lAvXXiDTTM0uoHxURGRraCXEzwOvx+fsfW/t3EOAY2ioWFhfXNLvcH9q0j7nvm3X0MqT3JQ02zxXsI+IcGcKxiCSksw0jbHvbJZ9HDq8t+0DYgMEejm5wzgrLUD4jzSaOJfZwiIi47J+guZrrzXUwfR9d6kRvyWRQE77m0eiST2krqDdb4qz2iTjGuWVidATiVJdcVk3Kw5LPkbfPxXa3HGwQL4XX3grN7yqblGMplcU5qzCIuSICG/tn6GKcKeN5xC6OIRGRGuVn2LcbcwyEMzjfhA0cZ8t1nJf37d1nlHH+3DGIA/IgWHQ7Va9inWL6XreQM68Pe0kaDTyGs2HdjoOtX4MjKxZrNb+U5WBd6zSGW3Vzjp+Zw/vGf/vv/wPEZ46j169Oc+zxC+hTYF+liDl3BHRvakXkL6brwnOVRf05scx2N2YDmmuyeSxzge6f0+SBrC6bHqFOB8s9fRpzbVjUH2n5lITyf3TLRJXysB75NI7VZmO9jG5z9Euhv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0nE15NKamUlLIrugj+yzUXR4/h/q8S3OmAsyPUAtcKGDxjSbmj4hi1Pixlm6R9H4iIrU66tjaAR7TSTAuFnA/7UszqNU8T3vhx4mpzR0dRm+JRdrZpcoSxOk8tkO5D/0SKcd8/uuQVlFIp9ro0H7TdXw9H+Pre7eZ+zRPjOF5nDuPfpaFufVr3Am2fg/vXC4tuVU/y0IVr8tTzz4B8ciImQtidIT3a6frtFTBD1AuEpeu6+Qu8k+IyLZ+vJYXjl6EuFFHrebGfalFRHKDZYidDGqomy0zN8P4OO7nPjON2s35Bezz4xNooLJIT1rvdMmR4mKfDTi/APmU0qRh9xdo73vb1FmPUs4Qn/TkG6vZJc3ClhCE/npOCMpp4tKYTHdJiZHOouafxb0WzcicA4MlyVGX+Yi1sw75OJwUxjbnSqDzYG9DN21ut7wXG6HuYvijyuUyxDw2RUQ65HmJKDfHlTwZnKsjDLv0cyMvRPdz71a/rSCby4q7mi8kIq9fh+rkcoIAEfFIg839i7975GHqelf253RonrQov0muD+tQq6HfK0tjZG4O12TXNf2F/Vmsd47y0xQy6MkYHcacXPMJrtG5nDk/jYy8fO4DXqJtzpnTV4a4WKK5QESqyxWs1zzmhEjsdc182CVPxbWmf6BfvDXvLF7XFuVx6ORR3y8iYlMuhwqtuYPD6DPqG8A8DiFNgHFi+uDCANdYzvcQ0L1LHLz8/NahdSjuNteRv9OmcVShvvLQww9B/K3f+q0Qv/DiIaMInnZ9agv2lMbU1uxVibqt8z4e89yZc1hGen3scY6hl0N/0VAURVEURVEUpefog4aiKIqiKIqiKD1HHzQURVEURVEURek5m/JolMqeFFa1i6059GT0j5DWM2/uET1/CbVzbdLcuinUVfI29HHA+yPj8URElluotcxTjop2EzXurTZqIH0qI6I4SUzdK++XXSLtZamEetBWC98/v4B1LhRQ7y7SZY/4ELV0KZf2e6d0CynSZe/cu9Moo9XEY37xiy9C/OzR2bV/h9GVtbq9Ju3Gkl7VCHfaFXjt4Yc/B3ESmF6GUg7bKKB9yNuUw8Cl5/AdO7dBfPNrbjTK2LMdfRuVc+iXmFnC/pai/rlnED0bc3PoU7rlwM1GmTfdcgDiv/izj0HsCmqiA/Id+T7GSTftbwbbyiEDws5duyGePXcEP08+gWzeNDAcPIj5Y9pNPPdt4+v63U7HvL5bwcDAgKRW9zy3BXXcUYTjJwjNMcK+gnYb+5zl0B7upLONKYeF32UcOrE5R8Hrhu+D5lWq95VyYKzUE+M4Zn8E6aKprRzS8bOfYqVepLWOKT8IndeVPBumP0HEfglPxmUut394nTwamWxqzaNhW5SDxcf1MN2lH2TT+BlLsA1T7Oug/ljqG4C4XUX/l4iI79K6nsb+1KL5xqF8DCSxF7+F1+QirdkiIgOTmAsouDgLcZbGXaaI5znch96A+YWzZhl9eH/CBpY65S86MI5rQUz3Ds2m2YeaDfzbAPk6Ni5ZYbj1uVwiicWWlevJc5FLfSudNu8BOXdafz/6JoXnCZpHeIyHXXJZxRF5uWiO5Hqz5SKk+4J6A9ehTse87+S8TlHIPg/8zCc/9SmIn38R77Uef+JJowyL+ltE83LIXjryjSQ0r8eROcfyXzhvUyZZ759JcvX3gPqLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/ZlEfDybjiZlY+kimhHm+gQHvKt0wdm5dFTVd1iYqP8BjZDOomI4/3Aa4YZaRyeEzP5X3DUTfYIZ2ZH/De/aSZ7raFMmlOI5KPe7QvvaRQn15ZQo9Gyze1m320L7hLng2bzrNJartL87hX+VLd1OfVGqi3/Yf7DuMxNsghWTu5FTTbrfW8A3T+b/mOt0Mc+7int4iIQ9rLmLSbCek/HWrTDPmOZiqorxcRqVWOQrzYwjKtDJpnjjx9EuKFRzDfxO5d6L941d59Rpk+5dbIUv9KSE/OuThsB8dM3EX622I9Luk7d0yhR6Ndxxw3N5bQd/TYE08ZZUyfQV9Hq4HXMGmujxMep1tFsViU9Ko/JY6ooSivRqfLOK6S74RzHTgUGzkrKPRs87uiMGYtLumeyZMh5AOxODfHVYx13lveGFv0nVbM824Lr2e3PBUx+Sc4UQHX0tBi0ztyNBZFRFLkFbHJ53FZYx508XdsBSnHFnc1z1Iuh/ORkT+FO4uIOOS5iChvSEi5ORLK6VSrUe4Eyg/QrdxMBucXn+bhgObI5jLeO7D/sDhQNsrkNTVo4tzspMjTSH6CxMM6dstxkaa+UaYcD0kV831YNrZDu4bzWatpXp8MXVP2GW00FLDHcCuwLEcsa6UdPMq/w/4y4flRZEMOjlVo0CZ0vmkeZ/R6qssdrCU4rtlzEdG8wCYN9oEMDqEvqVu7s1/B9IXgtW400Fsycwlzlu3cucsoo9bgdZzvP8gXdyXPBreDmOfO+Y7sDXNuHMfSquG960uhv2goiqIoiqIoitJz9EFDURRFURRFUZSeow8aiqIoiqIoiqL0HH3QUBRFURRFURSl52zKDN6ou2LFq2YepwCvFfJoMPWypoEwT1nk+vrQjFKvtihGg0ydzFNB2zRTFVODEGfIfBRS4hTXxWetFD16eWlOAmU+m+UK2Iw2tWpIxtlUFt9QKqMBbHERjdsiIjUy8pQG8DybZOI7dhrNuIefOwfx6AAlHxKR0SlKsGNjmUN9xbV/R3EsZ5a2NmlaPu9JLrdi4uuj7lUcxmRv3ZLqZOi5OkUJr5IsJT3M4etxG428tVoXI2QO23VkTxniPTlMNnXs1Ak8gIX9zcuhyfHCRTOR1OBQ/8vGfgtNiJ0Omv4blMCvQ4ZlEZGgg+Y1N4N9ZXQCjZFnLuLYvXQWz7NdNxN9nXjhaYgHB8ls2b9uykuCrU8YKSJiiS3Waj+yaGcInzKNtTvmZgGc2InNd7zJQ0KmQp+S1nW6JFe0yCTNyT7Z4MyGv5iSgfJM3i1NGF8NNnWyATOxMLZdfL/nkGm0C+xZ54R8nEDR8LR3SThl8/xO7wlXE7hG1ylhX85Li7e6YYBLV4JXpkwXs3u9jmObkxamKBFnljbAMF7v8lVla7kC8ejIdojbZBYv57Ge3jDNy3SZAjHndl5js5T01qO5nDtxQP11aBjvb0REUjGu2w5t8pKm+5skwXrmcnjMLNdJRISuR4sMvxvjIOiSWPUakyTOWtLihHYN4cSe7GMXMTdoMMzh7ssn3eS5i98vIuLQfObRwOeNJowNN3heoc87ljk3cf9jDztv2pEtliGe3E73Gl024Gj5dP/Lm9tQ21q0kQPPj/x+EXM+4LbZeF8VhqFcPHfGOEY39BcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj8b0OZHcqgyxU0E9YnEY9WKZbJekcyR7HBjA4uuUxKRSwXhpIUWxWUcnRo0ZJ5Iy9HiUSIWfvFjv7Lhmk7Uo0WBC+Vy8mJIiNTGxT9TC84w4wZ+IVOr4HpLrySL5W04fx8apLKBO32+Y+s6xvjGID+6YhHhjEUEUy5On8TyuNc36cZFotd/FpMO0sHNdumR6AI69eBriDCWCSvWVIR4aQa/DxFAfxKynFxEZ7EPvDEnspd3CBDcjI+jpmJzA5EAXZ2YgPnr0kFHmTh+T+7A/pVbDtmg20T9RXUavSTePRuRTAqw0aqBfeH4IYr+DXoSRkVGIJ2+92ShjZBjfMzSM/TGzocx2Z2v9QZeJ43hN29rpcJI5jH3frCO3Cycv40R2rHtmDW2GNPMiIjbpliPydVxJq2vZpJNmL0CXfp+6QgK7dhvbIqQ6sa6az1PErDf38yYlaWN9N3sWuEwRkdDHY7JnI5NZaW+ri79jK/AkEW+1HWz2/lHiTb5uIl38OHTtU+xpDFkHTut8lzbsK+JcTEuoZFLo+4hpMcsV8PWAxkyb1ksR06uUo0xuHiX0azTxGJkizsMt30zK1qJ6eAm2lUPjxnawv9FtgjRbZh+qVHB94PZPpdbvgdgjthUE7UiS6LJHjeYm9rd26Rvc3/h+yqK5i5NsctLObp5ZmzwUXhbjxMH7sTRX3IASgyZmu/N1CnzsKzyv8/ubPif8M+/P2iHW20jmSAkTEzoGJ+jb2Jcu43a5v93IxiSh4SZ8avqLhqIoiqIoiqIoPUcfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/ZlEcj8gYl8la0jkHqlfBaJyZta4j5AkREMn2oISsPo4ax30bd2kATNWWVRdTUV+ZNHW+rgacUhaRDS3jPeCyj3UItMevYnC77NtfaeIxWnXKKJKjXK9pFiGMbNfJBYF6WdB51gRkPNaflFJaxW8oQ33IbauoP3HqbUcbOvXshvus1qGM9P72u3e/4ociTp41jXEsSvyOXLTg2PSO7AV6XkmfqX5/40v0Qz1zCPmpRm951150Q33s39vnlZdMH8uyTj0LcIG360bOYz+Tk6dMQt0g7nFCygEwJc0uIiFSrmHeltoTn1aii7peV2y5pO/uKlE9FRCZ2oQ+kf3Ac4pEJ9FNM3H4LxAMl7H/dNP2GLp9yimwcu24XH9NWEAbhms6dPRmsu5UuWl5DA2v4IRBuE9bYJyyAF5GA6sFlsv7XIt2zQzksbK5jlw3yWbd8JT0wn8eVPBwi5p77V2obPk9D754x/S25NPZ9PtPL597Np7IVZDxXUt7K9eTzS8hvyNdRRKRUQi+C4c+ha8uegYQ8Gn2Ue0hEpED+iIR8k60O9T/KGRAHOH8V8+j56DKshBXtDfLaeAG2RauFr4c2+nvml81cVvUFXKfLZfSlLTSwrTKUZCRJsF2WFk2vSY3m/yy178Y47JJD51qTJNaGNYly5XB9LLN+afKUmTktMPZSeN24v7pi9vGIfG+UFsj0qNH8Z3MeIhoTnJdIxMy35ng43/ExeOzyeQWh6X+waezFPL9R7NC9Q3wFr95L/Q3qsOHcu7XDS37uqt+pKIqiKIqiKIpyleiDhqIoiqIoiqIoPeeqpFOXf05pttelAq02ygYsD3/q4W3wRETsJv6U4zbo5yEbf/pp0PZvjRa+v9k25TGtNv0sZlTjCtKpDv2URz8/OV22HWt1sMy2j8dIEoxdkoi1aSu9jtl0IrSVnZPgT3Ud+rnQp58xPXq9SddPRKTeQPlCi9qis6Gel8u70k9tveByGa32+s/dAV3HkNqj3cafxkVEIvp5krc+5i0rWYLSpu00eXtTEZGOz1uc0tbGxnaRWCZLTlg6Fcdm/4vl5bexu9I14pe5TiJXlqGwjIi3Hm13aNtp+6uTTl3e3nYr+t/GcvwN19f3X146Ffjmz98B/Y4fch+k98e0P7IpnTLrGtDYN362j7m/0JwZ8Xa2L388kStLpyLeZpza6mq2SuRSr9QnDWkBtV0YmI0X8PaZXIfVc78s+djq/hcE6+cUUd/gmsSBuZDQdGKMde5f3JdYnuUH5nzkW9x/sGY+dVqWTllUyQ6NI94SWkREaKtfm+bEDq2xXO/4Cq+LmG3B9eDXnYDGBJ1XN+kTX1N+z8b48r+3cg0ON0h6DElRQn2ly/a73L9YfsNbADO8TSxvf7vyJtrm9QrrIdeJpVNCW+h2m//4TzH3aXoDz02GdCrqsnbQ2ONjGHIs6m/JVyCd4nl64/W63Beupv9ZyVW86/z587Jt27YrHkz55uPcuXMyNTV1TcvQ/qe8FFvR/0S0Dyrd0f6nXG90DVauJ1fT/67qQSOOY5menpZisdj1aU755iNJEqnVajIxMXHNjZHa/xRmK/ufiPZBBdH+p1xvdA1Wrieb6X9X9aChKIqiKIqiKIqyGdQMriiKoiiKoihKz9EHDUVRFEVRFEVReo4+aCiKoiiKoiiK0nO+6R80kiSRH/3RH5WBgQGxLEuefvrp610lRfmqOX36tPZn5bqifVDZLG94wxvk/e9///WuhqJcE/7kT/5EyuXyy77nV3/1V+UVr3jFWvye97xH3vWud13Tel1rvukfND7zmc/In/zJn8gnP/lJuXjxotx8883Xu0rKNzC6kCrXG+2DiqJ8M3A1N/Zfa3zwgx+Uz33uc9e7Gj3lqhL2fSNz4sQJGR8fl3vuuafr677vSyqV2uJaKd+sJEkiURSJ637TD03lOqF9UPlGRddz5WudQqEghULhelejp3xT/6Lxnve8R37iJ35Czp49K5Zlyc6dO+UNb3iDvO9975P3v//9MjQ0JG95y1tEROT++++Xu+66S9LptIyPj8sv/MIvQCbaWq0mP/iDPyj5fF7Gx8fl93//9/WbQwV4z3veI/fff7/8wR/8gViWJZZlyZ/8yZ+IZVnyt3/7t3LnnXdKOp2WBx98sOvPpe9///vlDW94w1ocx7H89m//tuzdu1fS6bRs375dfvM3f7Nr2VEUyT//5/9cbrjhBjl79uw1PEvlaxntg8rXCo1GQ9797ndLoVCQ8fFx+b3f+z14vdPpyAc/+EGZnJyUfD4vr371q+W+++6D9zz44IPyute9TrLZrGzbtk1+8id/UhqNxtrrO3fulF//9V+Xd7/73VIqleRHf/RHt+LUlB7xmc98Ru69914pl8syODgob3/72+XEiRMiInLfffeJZVlSqVTW3v/000+LZVly+vRpue++++Sf/bN/JsvLy2tz3a/+6q+KiMjS0pK8+93vlv7+fsnlcvId3/EdcuzYsbXjXP4l5JOf/KQcOHBAcrmcfO/3fq80m0356Ec/Kjt37pT+/n75yZ/8ScjIfaXjXubjH/+47Nu3TzKZjLzlLW+Rc+fOrb3G0ikmjmP58Ic/LLt27ZJsNiu33Xab/K//9b++whbeGr6pHzT+4A/+QH7t135Npqam5OLFi/LlL39ZREQ++tGPSiqVkoceekj+8A//UC5cuCBve9vb5FWvepU888wz8p/+03+SP/7jP5bf+I3fWDvWBz7wAXnooYfkE5/4hHz2s5+VBx54QJ588snrdWrK1yB/8Ad/IHfffbf8yI/8iFy8eFEuXry4lm31F37hF+S3fuu35NChQ3Lrrbde1fF+8Rd/UX7rt35LPvShD8mLL74o/+2//TcZHR013tfpdOT7vu/75Omnn5YHHnhAtm/f3tPzUr5+0D6ofK3wsz/7s3L//ffLX//1X8vf//3fy3333Qdr5vve9z555JFH5C/+4i/k2Wefle/7vu+Tt771rWs3bidOnJC3vvWt8j3f8z3y7LPPyl/+5V/Kgw8+KO973/ugnN/93d+V2267TZ566in50Ic+tKXnqHx1NBoN+cAHPiCPP/64fO5znxPbtuW7vuu7JI7jK372nnvukX/7b/+tlEqltbnugx/8oIisfOHy+OOPyyc+8Ql55JFHJEkSedvb3iZBEKx9vtlsyr/7d/9O/uIv/kI+85nPyH333Sff9V3fJZ/+9Kfl05/+tPzpn/6p/Of//J/hJv9qj/ubv/mb8rGPfUweeughqVQq8k/+yT+56jb58Ic/LB/72MfkD//wD+WFF16Qn/7pn5Yf+qEfkvvvv/+qj7HlJN/k/P7v/36yY8eOtfj1r399cvvtt8N7/uW//JfJgQMHkjiO1/72H//jf0wKhUISRVFSrVYTz/OS//k//+fa65VKJcnlcslP/dRPXetTUL6OeP3rXw994gtf+EIiIsnHP/5xeN8P//APJ+985zvhbz/1Uz+VvP71r0+SJEmq1WqSTqeTP/qjP+pazqlTpxIRSR544IHkTW96U3LvvfcmlUqll6eifJ2ifVC53tRqtSSVSiX/43/8j7W/LSwsJNlsNvmpn/qp5MyZM4njOMmFCxfgc29605uSX/zFX0ySJEne+973Jj/6oz8Krz/wwAOJbdtJq9VKkiRJduzYkbzrXe+6xmejbBVzc3OJiCTPPffc2ry1tLS09vpTTz2ViEhy6tSpJEmS5CMf+UjS19cHxzh69GgiIslDDz209rf5+fkkm82u9cePfOQjiYgkx48fX3vPj/3YjyW5XC6p1Wprf3vLW96S/NiP/dimj/ulL31p7T2HDh1KRCR59NFHkyRJkl/5lV9JbrvttrXXN87D7XY7yeVyycMPPwzn9N73vjf5gR/4gatpwuuCinC7cOedd0J86NAhufvuu8WyrLW/vfa1r5V6vS7nz5+XpaUlCYJA7rrrrrXX+/r65MCBA1tWZ+Xrm1e+8pWbev+hQ4ek0+nIm970ppd93w/8wA/I1NSUfP7zn5dsNvvVVFH5Bkf7oLJVnDhxQnzfl1e/+tVrfxsYGFhbM5977jmJokj2798Pn+t0OjI4OCgiIs8884w8++yz8ud//udrrydJInEcy6lTp+TgwYMisvl+rXztcOzYMfnlX/5lefTRR2V+fn7tl4yzZ89KLpf7io556NAhcV0X+t7g4KAcOHBADh06tPa3XC4ne/bsWYtHR0dl586d4J8YHR2V2dnZTR3XdV151atetRbfcMMNUi6X5dChQ3AP2Y3jx49Ls9mUb/u2b4O/+74vt99++9U2wZajDxpdyOfz17sKyjcZ3Ods25YkSeBvG39+vdobtre97W3yZ3/2Z/LII4/IG9/4xq++oso3LNoHla8V6vW6OI4jTzzxhDiOA69dvtGr1+vyYz/2Y/KTP/mTxuc3SvN0Pf/65R3veIfs2LFD/uiP/kgmJiYkjmO5+eabxff9tX6wcY7aOD99tXieB7FlWV3/djUyrl5Rr9dFRORTn/qUTE5OwmvpdHrL6rFZvqk9GlfLwYMH1/R2l3nooYekWCzK1NSU7N69WzzPW/N4iIgsLy/L0aNHr0d1la9hUqkUmMdeiuHhYbl48SL8bWM+gn379kk2m73iNnj/9//9f8tv/dZvyXd+53d+bWs4lS1D+6ByvdmzZ494niePPvro2t+WlpbW1szbb79doiiS2dlZ2bt3L/w3NjYmIiJ33HGHvPjii8bre/fu1Z2lvgFYWFiQI0eOyC/90i/Jm970Jjl48KAsLS2tvT48PCwiAnMU5+zpNtcdPHhQwjCEvne5rBtvvPErru/VHjcMQ3n88cfX4iNHjkilUln7Be7luPHGGyWdTsvZs2eNPn/Za/e1iD5oXAX/4l/8Czl37pz8xE/8hBw+fFj++q//Wn7lV35FPvCBD4ht21IsFuWHf/iH5Wd/9mflC1/4grzwwgvy3ve+V2zbBrmVouzcuVMeffRROX36NPwUzLzxjW+Uxx9/XD72sY/JsWPH5Fd+5Vfk+eefX3s9k8nIz//8z8vP/dzPycc+9jE5ceKEfOlLX5I//uM/No71Ez/xE/Ibv/Eb8va3v10efPDBa3ZuytcH2geV602hUJD3vve98rM/+7Py+c9/Xp5//nl5z3veI7a9ckuyf/9++cEf/EF597vfLf/n//wfOXXqlDz22GPy4Q9/WD71qU+JiMjP//zPy8MPPyzve9/75Omnn5Zjx47JX//1XxtmcOXrk/7+fhkcHJT/8l/+ixw/flw+//nPywc+8IG11y/fXP/qr/6qHDt2TD71qU8ZO5ft3LlT6vW6fO5zn5P5+XlpNpuyb98+eec73yk/8iM/Ig8++KA888wz8kM/9EMyOTkp73znO7/i+l7tcT3Pk5/4iZ+QRx99VJ544gl5z3veI695zWuuKJsSESkWi/LBD35Qfvqnf1o++tGPyokTJ+TJJ5+Uf//v/7189KMf/Yrrfq3RB42rYHJyUj796U/LY489Jrfddpv8+I//uLz3ve+VX/qlX1p7z7/5N/9G7r77bnn7298ub37zm+W1r32tHDx4UDKZzHWsufK1xgc/+EFxHEduvPFGGR4efsltPt/ylrfIhz70Ifm5n/s5edWrXiW1Wk3e/e53w3s+9KEPyc/8zM/IL//yL8vBgwfl+7//+9f0osz73/9++Vf/6l/J2972Nnn44Yd7fl7K1w/aB5WvBX7nd35HXve618k73vEOefOb3yz33nsv+CM/8pGPyLvf/W75mZ/5GTlw4IC8613vki9/+ctrsqhbb71V7r//fjl69Ki87nWvk9tvv11++Zd/WSYmJq7XKSk9xLZt+Yu/+At54okn5Oabb5af/umflt/5nd9Ze93zPPnv//2/y+HDh+XWW2+Vf/2v/zXsBCqysvPUj//4j8v3f//3y/DwsPz2b/+2iKz0rTvvvFPe/va3y9133y1JksinP/1pQxq1Wa7muLlcTn7+539e/uk//afy2te+VgqFgvzlX/7lVZfx67/+6/KhD31IPvzhD8vBgwflrW99q3zqU5+SXbt2fVV1v5ZYCYtwlZ7QaDRkcnJSfu/3fk/e+973Xu/qKIqiKIqiKMqWombwHvHUU0/J4cOH5a677pLl5WX5tV/7NRGRr+qnOEVRFEVRFEX5ekUfNHrI7/7u78qRI0cklUrJnXfeKQ888IAMDQ1d72opiqIoiqIoypaj0ilFURRFURRFUXqOmsEVRVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnnNV29vGcSzT09NSLBbFsqxrXSfl64AkSaRWq8nExITY9rV9XtX+pzBb2f9EtA8qiPY/5Xqja7ByPdlM/7uqB43p6WnZtm1bTyqnfGNx7tw5mZqauqZlaP9TXoqt6H8i2geV7mj/U643ugYr15Or6X9X9aBRLBZFROT3/ukPSDaVEhGRVtOH9zgOPtFYU2PGcZazGYhvKqUgPv/CsxD/7WMYL3dCKtN8suanbS+NZfYPDUJczGC990xhgr17X3MnxFEQGGUuVBsQu8UyxEdPnoX4vgcewwO4WIe0Zz4dllwP4pQbQexTvcKQ2iaJsQwnbZTRSvCaLrUxxYq9oYgwiuRzTzy91jeuJZfL+IO/fZtk8yvt8OgXZ+E9hfR+iHM5s16ehd09n8M2HSxhny3nJjEulSCeWThvlHF6/jms+wT2jYFxjL10C+JWYxniTAbr6Fhlo8w4wnERRXWIy6UJiNOpLB5T8P3VGvYDEZHFWQfiTqMP4mYnD3Ei2HcqSzMQt1pmGbU6nnsi2McrS+v1DDqR/NW/eXJL+p/Ieh8c27F77dsbO6Frk8U2mtxnzoH8ZeDZUxchjmPso4VSgWKczwopc64YHRuFeLmO13dxuQJx/wDOiUEF+2R9dhHichHrJCIyug37WCNsQ1xdxGPU602IHVqKgg5eexGRaq0KcbaMbRHQOAhoTowSPGYSm2WkXKxHNoNl+P5Kv42iSA4/cWjL+9/P//nDks6ttH9E9Y8oJRb2zhVS1AEtB9dgP8bX6wFeR4e7W7spTDGLa0uxgHGIl0nqAY4bm+oY0DwQJ13W/S5/6zWcciyRmN9Ar3OKsquo45Wymm1om06zLr//7nu2dA3+qZ/6MUmnV/rM8qVL8J5OE/uKm8qZB6Jvvnft3gXxzl0Yc5tOT1+A+MiTTxpFnDl9GmLq0mJ5OMbTWVwP+wrYnkVa90slXPtERMr9ZXpPP8TZAr5eLOAxM3msQyZntl06g39zaB2PqX9R75Tkan70iqgPx3gUa8ME0GjU5R1veeNV9b+retC4fPOeTaXWHjSE7rcdulm20uaNbIcm7XwWJ7lsCqdGz8EJyHXwpPnhZmNd1z+Dx/BoIUnRTX0mjXUo5LDOIU2KIiKtAGdOjx6oMtQWXAd+0PBc87xSNDhSLk9a9FDAkxo9aKQc89KH9B7PpWN2mQS34mfUtf6X9yRXWLk+qQxNFhnsS5ms2f/4QSNLDxo5Gux5Guz5At5M59r4fhGRTBPLzeZxoOSKGHtp7DuWjXU0HzTM24c4wmsQRfRAVcS2SVN/dAVv+qMuq127ice0BY+ZuHhMXmTbHXx/3KWMToTnllAf9lpmn92qn/Evl2Pbttj2yhxgJ3SDxPOV162+GPNnxMLYobmCj+l65nyUSmFbezSv8jH49cTDPulSHTzX7INcpm/jXOJ6VAc6Jj9oJJF5XR3n5dsmtrBPxTSfGfeFXbqO43IZFMcYb3X/S+cKksmvLOzGgwbdFHR90KAbPX7QsOmuLPDpOvHS1EUykcnxHEhrKD1o8JrKDxrO1+mDRmzkQv7qHzS69betXIPT6dTa+pHmeSPA6+TSnCAiRn/J0D1hjm+wqQ35wT/lmb2c7xsj6qK2e6V7QjxmOsXrp3lemQz1eboHzNHDDJ9nNo9xtweNTBbvP7biQSOmOcW+invubqgZXFEURVEURVGUnnNVv2hcpjJ9Rtqr34a50ct/+30h6RifP9bCb3NvPbgb4tjHz4wOoYwp22LZkvn4z09XzQ4ec3lxCeK6hU/hnTbKBm6749UQB/TzoIjI/AIeczRDT5o+/eSfpqdGevYc6SJNuHn3XojnZvEnxFarBnGd5BJi01O6S18ricjEGP4kGKRGID7+4un118Ktf0Z10iv/iYjkh/D8nn3iYYi3jd1hfL5Iv1i0ffxmo1XD69IqY18KLZQJ9E+Yw2ffNvxbK4M/L9fiCsRxlb4tiUiCRH0liEypgutgfxko4bjJpegYDfyps9oYxzouYH8VETl79AzETpq+L/FwbJ6/gFKpYgHPs14zZSthyN8U8bcrG/59JYnBNSIJEklWf9rjb5RbEbbBzEWcF0RERobw+mbo10vbwj7q0TfonSXqg8PmN19ToyiFymexTzarKGOSDo6lgwdRMjh2zw0QF7r8WpgmeUwnxl/JOh3U8FYrOF/xr41z03NGGafO0K+yAyg/cDL0TaaFdciW+Jdm85vJYgavD3/bGa92vE7blxcee974/LUmcTxJnJW5nL/B5K8NWx1zjm/TL0UpGkiWTYoA+oXVivmY5jrAvzg02iS/srDdLVqb2Fhq/DrPX9WKiHU1vxZsgm7TC5+pQ21l0y8vAX3DH3Spt1HulU5j4/2NtfVrcHlwXDKr39YPD6JEc/vUDoj7B3AdEhHx6Rd5y6VfxukXjDbdjx0Y2wnxnhtuNco4efQoxMtLON9VSMZ59swpiM+dxZjFI6y8ERGJfJyXPfrVJJNBKZVLkv5MEeedbJd7wPLgMMYDKFftK2MZhT6cH4sUZwum5MlJkzyLf1Hf8GuR3cW68FLoLxqKoiiKoiiKovQcfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1MejTOdlKRWd4ZptnArypRF3oXI3ALMJm3m/BnUrz8xjduFHp5FjXNCmtNubnfexSAISQvOux6Q3rjSQiHlY88dg3h80DyvDm8lSwrPNLWy57285vTAnj1GGTu3o/6xXEQt3czF03hI2paw0I86/Mgzd0zKpVGrPTGEOsFzznqZVmLqf681F+cWJbO6+9HELtQjOg7qDQcK6P9ZATX0F06dhPjUBdxqdHICdZeNBMvod00Nflg6DLFdWIC4E6C+s1bBdhxw8bqmyF9R6jO1m8Us6t87tK2nH5LnIsQOt3wJtZ9LJ81p4ejjT0Oc34b1ntyLfp5MHs+TtybttLv0H9Lvzi+gTt/f0Ke7bX+6FaRT7tquU7wzUkQ7dkho7gg10o+65fYi9rFWHdsl47z8biUHD6B3S0Rk3/6dEC/XyQ+R4W1YsN433oKf37UTtcB+B7doFhFJbKy3TafOu07FPunXG+in8Bvm1sCvaR+E2PJwrrdz5NFIBfQ6Hs/meVhEUtQHeQekyxryZr0t/+GXjY9fc4IwFmd1/CbU3/hsbL4Iq5/fSBxTG7E7gXeZIW9mKmX6dULaOr1JuzJmaadH28Vj8m5zQjvfsI5/BT573nWxy0fg7bRjT2waKvh+wyaPhLkrFcVX4Svrfm7dX0+irV+D9+7bL7n8ip/g2BG8N5pfxnkmVzTvldJZHF/tNt5z8O51sY8ejUYH58vhEbyvERG5e3InxBfOnoa4Sdt73/3aeyG+eAn9rykP+3O5i7fh+We/DPH9n/s0xNEs3mvY5O9JeKe1Lv4xbhuHdojz6HWXdpfkXTX7yGMjIlIcwHuJ/v4BiAcH1/1/rRZem5dDf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOZvyaLQcS6LVvXMXbdTYWhHmqxjk7NciUqC07O0G+jwqNTxGtY360YTKjCJTp+3QZ1x+lgpQA9mg3B0F0kg+9syzEO/fa2qib9izHctMoRh45070XDRi1Cleuoha9Gqti/aN9nd/5bfg/tFPf/l+iFuUfrUWYJ0WGngtREQGWujrmHRQc9mur2sCA8OXcu05frwuqeyK7njnbvQV7DqA1+DksePG5xtN1IPmyedSI9/R80eeg7gwsQ/iwSLqykVEQsqIfP4kejQkwTL7U6h/T4Q0+ik8z4E+U1dZX0Zt5uFDeIz+POrdiyUcE8EgarkbF0x9/MylMsS7pvAzuQIeM4zxPH3S4rop8zuOpUXsb80G9seNSbO7DP0tIdfnrmWodmM8h2KEnoEs7ZUuIkKpHSTn4nvabfSyNOvzECc5LHN22izjKcq10qY5bnAE/TTjU3i9xycof1GZsvEaJYqwpDiTwv7BfoKgQXmWsniATpf+kXQoS21Ea0wa56TsCGrEwyzWocMXQ0QSzi5OWv21bONdMmJvCUmyptO/kp6/G5Z1Bb8DZVXm19mnEHTMtSol2K4p6uPdMpbDMYU9G8hVJcL+ij708nBfCLht+P1GKuYrJ9K4UpZlKHGLstJvpFwsSn7Vo7F7L66H589hrqXFRfTgioiUyLeRppxjKQfbNE/zQKuNfYt9ciJm5vm+PrzX8anPhhEecxt5ZLOZMsSFHMYiIkPbdkHcpL7x93/1lxA7Ib6ecnBUeLE5N8Ut/JtNeZva5PuIqX/M8bg6jh6blYpRHg3yeaU3+D7CTSzC+ouGoiiKoiiKoig9Rx80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9EHDUVRFEVRFEVRes6mzOBpa0lS1spHxnPouCmTxWug30wIdypBs2c+i+aUNBnxchZWL8hjApIgRDOMiEi7gybDiJ6lspTwKpXGeo9twwQwE1PbIJ6vU2JCEZmporno1a++C+LFSzMQf/f3vBbiT3/y7yB+5OEvGWVsv/kOiN94650Qn7hAyecewgQyyz4mmamHpjHt4KuwjFaACemGhtZNfX5gmpWuNefPR3I5d04i2ObVwXMQ+zYau0VEIhf7S5mS0ew7gIauS7N4jAYlQXz2BTJ6i0hIGxaUh9AwJzQGvDQes38A61TIoTG3VjXNb/OXsM/HPo6bTAmvfdVHc9xzbUxu2BkYFMYeQaNfLoPnvlRZhPjiNJ5nSMk2g445juoNNEKHIRvj18d/7Gy9EVJEZPsNI+KlVto33cYxFNZw/rpwoWJ8/siz2G52gteqU0UjtxViP7fJEH3qcbOfn03hMcMEPzM0imbwJTKD52PcaGKkhInyxsbNzQJyaUpSSnO5Txtc1H28tn4V55P6adwgQ0SkSglc/Rr2oRYl5Bzaj3O3TWtSZsRMfmmV0fxokcHSWzVHetfJDB5IspZUz7qCGbnbCOEEhAEl03McPn88z0hwfuN8fiIiOUqESHnCJGxiH+9QJsWOmIkGoU5d/pYkvJ69/DF6gZmg7+Vf7w3WS/x7azjywnOSza5c0NIgziNZFzvD0sKs8fkWGZpHxibxDbR+BmSo98lEbcVmG9v0N8/D+bC/vwTxQw99AeIiJXG+8Sa8n+uQYVpEhPKPSmkY58jAxUGwtIRzWY6SVuYcc8uENG2wZLlYT24JbpqEc1gaY0ZE/Bq9Bw9Sa67HUZekli+F/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSczbl0fByrqRW9W67i6jP20Va476UmUhKls9DmCujxqyRQu1m7KHw7ZWvQA/BKCWeEhE5eRwTtZ07ewFim7RvSYg63wxpBO9+NZY5h1UUEZHH7r8P4iNHMHlc1KIP5VEjX6HkVfXAfP47fhG13Y2YkqyFlMirgsfsZFCPvG8H6vJFRMqjmDxubgHLfOMbb1r7d7PVkj/+1MeMY1xLoo4n1qr2tjKLWs+giZrHdN7UbvaPof8hSaM+eWQvtlE1xiRzddKXZgWPJyKysID9qZjCBEUTU2WIA0Ed63KMn28sYsK2jIPHW6kXxsUSjqswhW0z28Bx8+m/wvOKk2mjjD0p/IyTYP+bn0Z/hd/G9ndcFIi2A9NflZB+vEDJnayNIlObsjJtEW9++92Sza3MbY3TeO0e+Vv0VjmdhvH5ZpWTjpKHjJS2fTmcr/I0Jw520QuXc9RHXNKrBxjbF/DaPf3JhyA+8/SLEL/h2+8xyrz5hp1UTywjtYzXy5rH81g4ix6f9uGLRhmNGfRttCnx1nS1AvGZY+jbcgexXXLbzaSlN37bLRB7OfIFRiu65KBz9frkXpJY61prso+IQ5p91mSvfMZ+2fck1P9c0rfbVIbjmPNsEOG1btdR912fxms7tP9m/Dx9/8l2wriLLp/Pw4qpLegjV+NnMcrgmD0aV/JkfEWWDRbab4i7aeyvMUvL89LqrMx/zz/9KLzm0YUa27XD+LxP78kVMBFxLoce2eQKfaHZwr4lImLzdEcJSw8/8wTET9739xBfTkh4mfFhrNPoNtN/nKJxcsuNt0Hs/l//AuILlNxwuYLrfK2K86GISJ3mt0YD15dWC+fDgNZYHtuWZd5npshLkvJw/clt8DiHUSRyxqxnN/QXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6zKY9Gw/ckWPVi9DmoYwvmUQd+roLeCBGRe2+7AeKWjxqzSdLfZXKoKXtNGcu8cRhzDIiINEm/OZ9GjW1zGesZUToIl/YR3nH2FMTZiqkNHxguQxw8/xTE7At55MVDEB+ZRk18O0RNoYjIhbPob5ldQL3yXbe/BuIdZdxD/t/9t49D7Lcwt4eIyBNfRp3gpUsnIL7jTevXz+2YdbzWpCxXvNXcKkGL8k+M4b7VFy5dMj5fbWOfTOyjEN92836I734L5RdIYT6KoImxiMjRo5TfYwmvU5b26I5SqFU/Xz0L8WARdZYT/SmjzOIA6Srp+4MG7T1+4jzqQ08+iLkY/BpedxERaxu+pzmLuv7xHegVyJapnjZeL9sxzyNHfgSfPDHexv32bdPjsRXceMuE5Isr7X28hWNgeQm9WIM5s3+EpJudr6HGdZzabW8Zj+FSHgPPMqfw/hL641JZnDc5t1Amg/0nn0fF+vIs1vHIJ3HfeRGR8gzl3qC96sM2+YB8yk/RojwcXXT4TdIxC60X0TK2f2Ue5/LcHK43QcXUd3duR++asxPbN1q9fNH1sWjI9Jnza9fTsbASHnlxrJS5F79FiS/SHvY3O6b+1cH3x7SXf6ZbPpsQjxEmWEZ6bCfES00cRw3Sjrs0VySW2Tdi8itY1MdtzntiJBngY5rnlbAHxnj95eGcLF2dIZQ3gnX1sbU+f0TG8a49xVKfZLMr88upJnoY52dwzW3F5hxdHEKvn0W+vGwG567BYfSNui726Q77X0Ukm8X+cuwo3m898uADENsR9tfKPM4z0+fR65UumnmmUjn0d5b70P/1uje8Ecuka9dq49zUbJpzU6OGa/AlWsdPn8J71WPkV2bvyRTliBMRGRwchfhyzpTLDGzI89VqteSLT73fOEY39BcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpj8aQk5b0qt9gUlAPWiqhlvjpJfQUiIgsdVBjtmMM9yf+3tldEHtV1K0NHsNjpk+Ye61HpAvcSTJGL8I/2C5qAiOLNICPPQlxXxf/RDxEGmje7Jn2zi85qOfr0H7IA7QPtIhILiHt/wzq8yYPor+gmMfzumvPJMSzy2ROEZGZOuodm03UZp88dmzt3y1/6zXy9UpD3NRK45SGULu6UMW+kCmY+tV6A/01AWmJD7+IGseLF9AvUSxim46OmhrHkZ2oD22ewWt7bg79D9ki9pXBYdS295fI22Cb48qlnDUpG/MFhD56meKA2iZG39LBW3CciojcsAv/VszhOOgfxvNoNnFM+D62S23B9NBEPh4jm6IcEdGGax58RZvSf9WUSp4USitzxPw85pnxbDzngmPmElqKKelJgtc3RQkBthfxmNk0Tg5+l6+KOj6WUSPvQiqLc3XiYZk5C+s9MoT9J+V28U+cQ8/XxVn0JoVkhrNt2oue8rK4aXP8shepU8U+mEtjvRfr5Cu6hPNZX9HcD79gkYeK8rX4q6ceJNcnj8sz52fESa+OiwTnL/YheF32yXfJF8Cad4/8D5QORdp0WUb6cL4SEdk5gH8by+BtRiGHfbrVxjFgUY6opSpex5aP7xcRiUK8Hg55T1IpvK7sfXDIe9Jpm+u8RW1nk7+g42Mf5zq5lJMgmzH7n02eKx5pG9Nlddo0l2wFbkrEXWnLcj/mkbp08jTEmS7+iep5XFMvkZfyiSfxfutGykeRy2Pf8jtmX2DryrNPPgbxMuWjCOk+II7Y74N0y5cS0P1QPcF1P0dLWdrDa5+l8+rrN3PEZchzlbIxrtI8/8Y37oF4dBT9F4WiOXbdDFY0jrEtMhs8NJzH4+XQXzQURVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6zqY8GvsLOcmu6sTyC7jXsGOjlmv/1JTx+dol1O0K6ZEnSR+aS+HrDnkGrC57rbPzoMP7Z5NW0yO9nUv+Co/26w+KpoEioX3Aww4eMyKV36iNtXwj7XPvW2aOgWgC9XWZ06chbvJHyDNz0w17IR5vmh6N8QA1pfv34B7We4fWvSWNVktE/qdxjGuJFVtixSttabvYpvVWBeLRUVPj6Ah6F6an8dpWE9R4V5ewjdwM9t+FBvVnEekr4v7ZmQJqMUuDOC6yaRyCo/3j9Dr3N9MbEwQRxegdSDwcA9WlYawTSTXf8G3mPuFpmYV4fAx9Rimq59HncBwtUo6JdtXUFyekle0bwjKija/H1yeRQTaVkuzqHGJRfWtLFYjtLh4N18Lrl4R4bcIQzzkIUIebz9H85JjfFdVqqJ1NkRa8WMB6eSm8do0G7o8vEfbRAcpnJCLSprw6tDW9BB26/g2cy2s1fD2XN+fA/gK2zWwVx2eG9MVJjHvRt0lHfe6smUto1zkc0yM7cbxGcWf1/6+PR8PK9YmVWW1/Wrt4Nex0sTHxrB/xp8h7kqM1NoiwDfNNUyOfFHCNLQ9g/xkv0rpexus6v4z998Qs9o3jC6Y23HJ4nsTPWHRvkabcVp5N3qcu2n+yZBjaffZoBJQzhz00nL9GRMS2sB4J5QfZOFSD9tVr5HtFJ4zFWr1HStF4Y59LGJj3GAnlepmZxnXlxCnMWfHII1+CmHOSuY55Czs8UMY/BHgtXZoya1WcJwaLvLbhXGTxPaWIRJR/JvYpHw15hvrKeJ/AvpB22+x/R49gPpCH7vs8xKdPn4R4YgJ9ufNLdF/QJY+Lm8G5nX1FG/NAdTaRS01/0VAURVEURVEUpefog4aiKIqiKIqiKD1HHzQURVEURVEURek5m/JoLM2cltaqxq4Tor6r5dA++n2ocxMRyTZRs9g+hDkFIgd1bWEeq2c7qPlLc74KEbEE9cch+UAi0nYnpEFjWSvH7shuo8xiBZ/X2iTN9negHq8/RA10vo3nFVZM/W99lvaEn34I4ouPPwNx6SbMq7Ewg9pjP4d7YIuIhCSbby5gfoWqt17PZhcN4bWmUa+Ls+o3cBrY5kUP+0rQNPfwtkm3m02jxtCm/AHF/jLEkYPXpeWbHo3mJbyWuyZvgrgvi/4IzgcRLOO46c/TBtyeqXttslbXxXrGpGM9eRz7fP8oaqrvuNP0aGRlH9Yzwj7cbuA4CwPcH91voQ427WCZIiLZPP6NZdfWBh9YnFwfj4YE4cp/IuKRD8Gj723KfeiTEhHJxdjHzlGuoA75IWpt1vpiH3bTZjuyNnpqG/oM+gZx7M8voHY3oM+HtEoEvtkH06RBbrfIs0F76jcpB0Z1sQpxEnbJcTGM82hAnrJ6A9eXZoe8SyGOtfY89kkRkVNHUSM+dDf61NzVxBIuJ5jYIhLfl2Q110JC/gmLTASxsXqJGM4CNh4IjqvQon30OXdHF6/KzDIuJDG953QF+0KH8mZU6DouN/Hzzcg8ryr1BZvGIreVa/MxyE/R5TtYi+YcI51CgmMgjiknBtebPF4rx4z4D1iHDZcr6my9T6hvcFiyq0khLh1Dz4BLE3a7Sx4NSWGbeOS1ZM9inf2v5HuJXdPLVa2gfzii9bGvXIbYp77BfrN6Hde6br6QOuVdKVGOijjAvjM/g+tjo4Fz0ZGj2LYiIo9/+VGIT548gsegep46g/fXHt0jxYnp0bAdbE+Hrmm4ITdMxEa8l0F/0VAURVEURVEUpefog4aiKIqiKIqiKD1HHzQURVEURVEURek5+qChKIqiKIqiKErP2ZQZfLGxLOnVBFHnGmgGDsnwlbLGjM/n+ocgXiCD6BgZRLNtfA6KqmgE6vhm8jIZwjLy+zFRXZuM2PV5NCGmY0omRMagzpxpIJQ0mhQtSkDkUrKguIptl72JDOYp00ifm0WDXePCBYgrh49jGWfRbFQcQGPqYtk00y7MYNtcnD0P8a7UejK5Vsc0hF5r7JQlTmqlT7TaeO3rZ/C6dObNhHAjE3gd8lnsb8uU9K/o4rUfGEVj1NycacR1Ikoy1yGDXB0NcmkLE+TYThnixXky/+ZNA9ZCDevZIlOYuHjMcxcogdYUbjSQKeCYEBFxacOCVouSo3WwjKlJfH8fmdpnzpjJpvIFOiYltrQ2eNg77S5jfwuoLlYkDlbau0GbJfTncIxlUmb/8DtsZsTr2bSw3y51aNODEiUaM8y8IqU8GqnLfdiuxQIa/pYrWIeFKvYHR7BPDw+YJnemTeZI8XHs+T7OP/U6zol1ThooImlKnBXZeO7zNZwDlqgObTJktgMz4dT0BTSSmtdr5Tzi5Pok7IvCUGRtUwoyClN7xN2SWrK5mJKPWWQWD2ntKtrYVzJdvqqcpzmuTUknbdo8pUl9I+PQeVAfz9vmHOhT0tIoosS8bA4XSrDGZXbZbCIhY7zxFjLXslk8NtzjXbBefjuajWXyxjZbweTkdsmvJs48+uWH4bWFZZw3Wkvm+JrauR1im64tJzXk6Y0TGHYbhyEly8tnKREvzRO1BtYzS3V44sknIT5NG/OIiBT78B4wn8N1PWXhGDh69DDESxXcWOb06WNGGUsV3LQjoo0DeMMD3veBzdvd9lNJYu7DeMyN1yfukjD7pdBfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwalXZbUqsejZkmamgDSjw1NEqJyUQk2TYCcboftb7pKurt3GlKMkfaz7qYIrOogPpkbwdqAl2L9HtlPGZw9CzG5ANp26Y2vPgtN0LcpIQxcgT1eBLS891FfH8nrhhleGOYOGrs9a+BOJ1FL8DiUUzWUm7i6307TP34WUoik3VQg+dtSMoVbEKf1yssicRa1QwmlMhsuITeHKfVRbtZQ51kTMmB/DZqN+fnsU8nHmmFPdRhiogMj+B1GhnEeg2XcQxIgNfFo4Q5gYPjrNowkwSev3QK4pnzeB0XMZSwcyvExTIec2b+RaOMPgt1/rkU9vmRCUwQOTGJY9sKUSdbO2gmZPPJPxVZlOSts+5faDU6IvJp4xjXmjgIJV6dE4Ia1m+ggOe8XDG9LnMt1PcOcTLPPPbRmfMzEJfa4xCnXXy/iMjgQBniQg7b3qXkqqUSvj59Fv0SjcaVtf911uVTwsyYLF1L5FOr1PANcWJ6wNwZnCdTRRx/dfIJLocYd0hD34lNf0ubkseFNM9Fq8kMo2DrPWoiIrZtib3qxeAEfSxoN14XU3NtHoND8kkmGKftLn3BxbFdJW9MPouFuCmsU5oSiy23cM3Nd0mWWKBEcKeX8Po06Tw88mTweVrdvoJljwU3Ly+J9Dofkq+FiEgSX30StK4i+2tMzslIzlmZL8a37YTXAvI8hh3zXqlDfpwKzQMBjVGP/BVWhOccsRdMREKbkjCT99dN4+suJfbsUB9//hj6JRaeeNooM5dFH1vKpWSNdF4tSmYYs9+iy7V1HJ7raRxQEkrDX8GJBh1zfuA+bvbRDZ/ZhEdIf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOZvyaExOTkhmVT9pn8I8DllKWxD5pv4wTXsJLzVQw/zwOczbMEGa+RsEC+mWR6NF+SX8J1Fv3uK9xycnIW7vx/wfzRC16bfuQW26iEjDRn1ea/o0xKllyjlSQh2+f5Z8IZfMHAPeyCzWaxS1/t5AH8T9b7oD4sq5ixCXh0yd6x2FHRB/9kHME5Aur/tuojae05YQtOXys3GKtOkFylngRWbX5v21rTSeQy6Dx1iYxf4V0Skf3L3NKGNycBfErovXut2gPAiCemaLdJN1GkdHTmFfERG5WMG/2bSnfFzBMgcSHEf7+/H7hrBpXlvfRa2sE6BenvfjT2XxGKND+yAeKqF3SkSk2sD+1qE8B3l3cO3fDfIEbBWu2OKu9kHPIo9PC+tbrZm5IFoJ9ql7v+0eiG+6ET0YD/45+lDmL+C1G+8rGWX0FXE+8n28Fh3yLsQR5SfiHDmki15YXDTKlBjPnbXmjToeo0JzYmTh2LO7eE9mFnC9GC/TuedwLNViyq0TUz+3zDnQyVEeHMMGkcD/bz2WXNZJd9Nxb6SbB+CK72FPCnk42tQXwjr5EUUksXAt8tLYpqO0/mUdvC47KBfWrhFcg/NdkneQ7UgeOI7epvuOYT0XfcqXxfcFXfwtYcj6dXzd+Iyhd++iiSeuZH3sUq0tpV1vibPqYZicwPWvUB6AuHXJzGW1uIQetUYT542Q5ibh3DA0V8WR6cX06VouVXHeSKVwbuH8M5wjrN6h+bNL/p0wxPnO4bwtPI/Qesn5RLr54Lhv2FeYg6LoSh6Kzc8PG6t5VXlhVtFfNBRFURRFURRF6Tn6oKEoiqIoiqIoSs/RBw1FURRFURRFUXrOpjwao+Mjkl3Vt9UuoOYx188iNDNPg0dauIvzCxD/12degPjAIGo7fzKD+6bnujwmJQ3URS8+hx6NxWHUj57soB+C9X0T+zEvwvZ+/LyIiH8RExUUyA9h8SbyNWyHtE37jrdM/Xl08iTEyTRqUJeK2N75A1MQT+zaA3GbcmaIiAznsH1vv3kvxNt2rR+z3jT1l9eaUiknbmrlomfy2GaJSzkuyth3RETCiPWgeO3ry9juTp32d6f94aVl6silhfpiy8V8MlGI9Up7GAekQV1G24Ik1YNGkdkAtbHZBOuVdtCHNFN5HOKdLvp9pjI3G2UElD+mRXl0ln3s8/EianGtGHWy5byZYyK2sQ/Xqqh7TeXXc04Ena3fQ15EJJ1kJZ2s9IOxYRxTT0Q4ppbEHMcTN2Fb3/MG9HzdcBDnm8EcTtGf+e+fg7haMX0gzQaO48V5bGufNMaJixNprcM+Ibz2/S1To5wWvFYRaa0rlHPEJ727l0IPUDsw/XdLbbzmHvmXWg555YTndvx8MzTbzqF5NJfHekWruuQovD79L4iCNZ06L382JX+4Go+GIfpnXwEVwtY3T8w2fGUZ2/C2O18J8UgJDxJTISkbvTPbhnE+s7vkmghD/Ix7YBTiags/83cnKhAnlMeA8zWIiLjk6Uls1uFzW9IxyE8QdTkPI9cG6+g3iv2vg02o026Ju+qpcSkvQ38JcwKF7S73CFTnZgvfk3KxjVvkBY1pXnC75ILgy2BTfol2G+ciHjd8AN+/cs4cHmtGXgyuFHkwriZ7ilEGNaZN99fdfEabLcOYD176pZdFf9FQFEVRFEVRFKXn6IOGoiiKoiiKoig9Rx80FEVRFEVRFEXpOZvyaCxHFfFXRZpughpsz6U95R1TwFUJUY+32ML3hAkeo+qhJv6Ch/tpl5Mueyjb+LckQT3xcoz6vPOzqOMt2ajJXSJZ/icufMIo8wDl4tgzgMcYTGNujsZpzPURtbAOSZe9oZeW5ug92HY+5YAIltFD4z97DOJcF4FnJ4Na2B033oTHnD6z9u/wOuTRsDuJOJc10ha2UUD5CZpd9IPNOrazl8I3lSzsX2nSCqdC3Lc/72DeERERp4O6/biFWuGsV8YPRPisb0Wo1hwvYhlj5dcYZbYizBfQWMRxdmr2DMT9Lnqh+hI87+0jeA4iIodmTkBsW6jH9Sxsf7+D59EmjXSr8KhRRpQir1Ibx1Gtsu4DaTVMn8BW0KwFYseruYTS2B86NFdM7DDzrLz1+/H67T2Anp5UFvvkTfeihyOkGfvBP/obo4ynT6Cfy+rghwx/QQr7+SJ5MAb68Tq4WcyDICLSqmIfrC2jdr9BMmeH9N2dEN+w3GV+adJ4PHQB58Sz83iMGunsed/3jpga5tIQevAKeRwbi6tzSCTXx6ORRLEkq+fFuu/EvrJomjXYCWnFLWqThM7T4Xw6xZ1GGRaZJzsNvFdYdNFDVMzhMY/Noafoy4crEDcWpo0yc2OYv8imBChBE+engo3n1Y7pvC3z1sjQ0dOaE3HuA9bUh5QDokuuBPYccA9NNt4jXSGPyrWg1aqIZa2MszOn8Z4im8F5oVwqGp/vkMfCruDrw4PoN2R/RKtJXq8uXi6fPGUu+T4cytsSBHgvwTkxrnRdRUwvjXFpOecFj10jX4U5Nxlj1d68B+NKGPOD+YaXfO/Lob9oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNeTRSSSypVV2gG6MObshGfb/vmD4DN0C9XZP2RZ8cxpwDU7tQ43yhTvsyd9GIpchnYJGo2Y9Rfzw+iBppl6pdncN8FcmiuTf+9AJq/5dzqFXc3iFd4jx6NKSFhdqh+fzXopwPzQjbMiFvSa5FOUsunMfXu2gAG7T3fbmD8dCt+9f+HXeuvLd0r0nmE4ndlWseZ7Hv+DZqulNddOQpbxBi28djJKQTj6nvjEy8AmIvOmCUMTeNQn32LoVZ2kvdx/7YamEdMlm8rnaXEdtXHoc4VSLN/TCeZ4p059U2Juu41HreKKMwhn0yE6FHo9PGHAZOhPkgElIbzyw+ZZSR9lDTOzBwK8R2sF5GM7upqatnTC/OSq694od6+LmH4bXhPajv/8c/+t3G53ffyHlWcE7rcF4fH/XCN9+JeVTOPIneGRGRf/jLz0Oc8lETH5B/JiavW18Gr9W2cfSgGXpjEalTP+acF5UOesh4hvM8PGbNMz04Xhn77bnzmIdppoafGdqOOUumz6OnIwxwnIiI2BbOG9Ul9J60w5Uy2u2tn/9ERByxxFkdS8a++qTh7qahNjTYV9KG8+sxrq/nmmYuocPLuN69uHAO4r4BHOcx+Q0ryzgmgvOYC8tdOm2U+a4fRI/G3AX0cezpwzFgZ7AOD5/BObCLxVT6UjjnFNPYf9Ip7DuWg693fM5FZOaZWG7j2JzrvPQ8Fye91+hfiSeefFDS6ZWxfOHsKXjNc7HRGvWK8Xk3g+tjoYDrxtQ4rmXLi3iMJfIwZrNmvralCn6G0p1ISN6tFnlkHaF7h80kjFjFuL3iP1zBo9GNzdaCx/KVxv7VkKhHQ1EURVEURVGUrxX0QUNRFEVRFEVRlJ6jDxqKoiiKoiiKovScTQmds+2cZFfzaEyHqEceIY18f6tiFjZ7EeKwhrrIgzeiznL7gX0QLz5zBOJxy9TYCml9vQSfpbKUS8El5VsuhxrCoydOQzzUMJ/Ndu/EvZ/Pp1CLeek4nne2tgixFZIONjLPq02eF5+Eh34DX1+k3Aq5HO75X/NNDXSjg/VYvHAJYnf7ej6Qpm/uX32tOTDxCkmnVjTBUQ61mZGHWuHxMmrhRUQyfdgGFu2dPjd3FuJFalMnsxfidrtslNEKcBxksriHvO/j660Gen4aDeyfEWlSoy45VkpF1BtnC5R/Zg77W9tBrfvFBmrXCwum9tLpx2MG1dMQ52zUtfZnd0LsprCtw47pocmn0UMzNYbj35N1r0C9ZnqltoLRXROSX23fsIA6/Ve88jaI996G+XNERKIE80sEEfYHP6JxRfvqpwo4ZW+/BdtIRKT+V1+A2A3welYpB0nKxbnkFTfshnjnLoyXG3gOIiKNWdSbz1DegktNysfgYL92XJyvCmPmHPjat92Dx/ybxyCeDlCX/84ffDPEX/z8IxB/6X7MLyMicoF8HEFnO8TW6ppjxdfnOzonWc8lFNPalaLcJGGXPAudkPNM8VinmNZPi7JJdGLTJ7BA/pwU9eFim+Y4mtIKbcwB1U4wr0bQ5bzCJVxjZ87hvUJIPqS7v/WtEA+RF26kYHpPtg3SPEv3Gpk0zmku+fM4H0PYMdfgUzMViP/rg6chvrjBw8F5ObaCU8cOieetnNfiPF6n3bsx51Oa2lREpO3TfQyth5778v3NId9BrYvPJaF8O2nyhYQNnGsSWmP9GOsYG8vhlb0x/BH2S1wp3gq+Eo+GDfed6tFQFEVRFEVRFOU6og8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTZvDlRiD+qgHqvmU0zITo45TXxmZCo+wsJr/LBGjovP3ON0I8sQ3Nt3/z2HNYnw4aiUREIhcNUgEZxrOU5KZ9HuvkDKCxe3c/morbEZp7RUTcPJrAbr33LogXyfO1+MQsxB1yG8WumYSmRfXO56nBs5iQqJXC844HMcFaW0yz5QyZhpcraPZaOnxsvc4hGqi2gptvvley2RVjl92Hxjy7gOdfzqDhWUTESWO7OoKGvxeOPA7xwlk0w5+awf7quWb/yxawXVMBGc8C7CsNSk4VJmTUTWEdm3U8nojIydOYtK2QwTKiGId5nRJnztUw8dmeYKdRxuIFHFdnTx+C2PPxvMsFbLuJnbh5xHKIfU1EJKaEbAMemdTT69c8TEwT4FbQN9ovhdJKPf8/P/0eeC2Vxe9tAtu8VjaZG22agrNZ7NdJgu8PKeHoxA7TcL7/IBrEzz+H7ZhEeAzHQ7Ok76KJ8+kTaJqerZhz4MwcGsTnlrGPVWketh28foUM9q9Xf+vrjDLu+o5XQ/zIM5gwrHkcE8PlyzgO3vHd3wLx0Rf+yijj6ccxWeUb3oFtObZzZR61InMzg60g5bnirJpxLRv7Rh8lL2uGplmzVcU+yd80XskfmnLwE5yIU0TEJbP29hLW68bRMsSLSxWIl2mjhyDG85ytmpsR3Hf//RDf/Mq7IU6ncZz1F3Cu2TaKyYKHu5jBy7QBiW3heeZo3rWprXzaQKVSNze0OHIONzSIaHMRK3Y2/Ns0xV9rFqanxV1NRBhHdO1pncnmysbnZ+cwcXAhiwn7anXcIMijTUTabdpMpUvezCxtfLO8jMdMyESfo3unaosSmtI4srsatyk5Hhmlzfx9mzd/X8m8bZMJvhcJ+l7OtG51Sdz6knXbdMmKoiiKoiiKoihXQB80FEVRFEVRFEXpOfqgoSiKoiiKoihKz9mURyOoXRTHXdGBHV9ADXaLtOflKTNh2m0eauOKLvo8dm3bBnGpgH6JToSCvE7TFOilPNTXtRN8T4oSi6UogUxrEbXjNiXdiR1Tl3ZpAX0eS4dehDiXQe1cLUO6xCzqRTsF1GmLmIncckPYNouU+KZGHgo7QE30xRlT52pnSKtIWv58dV2b7Udb79HYffMdks+vtF3ioY6cvTmug+0lIuJE+Bkri9el+Tye04Vz6F1YbGNcLOB1FBEJZ0j/mcb3jAyMQDxYQu9CvYn15oRGQdvs8/UKJrRqU8Ihm/xS9TZq2ev0/mpsegssmxJhWqMQv3gcfSJ9Q3iMJRf7tJc3k03Vyc+ysIR9dNfoK9f+3aybya62goZfF6uz0k/yA9ifYsFzYn+FiIhFuu2wgzrrJDFU8xD5pNkuj5pzxTu+5zsg/ouZT0DcrLC2G8fBgo39ZWiE+mhoejQ6AR7DzeOclqWEoyPD2H9effeNEL/mzXcaZVhlbJuJXTgHxjHq6o8fRw/HO/4ReucOHBg3ynjiSUz0dv40JoLbsXdCRETCTa2cvSOXy4q76j9zaC1aJC160zfXqiiiv1HiV0M7Tn4Lm/wSUWwmEL1jqgzxt+yj69TBzyxTW0Yh9r9mDftbgeZMEZHb7nwlxK98zb34GfJX+B0sw2bJfNJFQ09/SpHnLwhw/J8/jX6ELz7+DMSPXzTn2UMVbN9lH9dk212vRGJU+tpTa3XEWZ3DcrQGVysViN0uCfty9DePrn2njfN6IYfn327jfUzSMdeRgO75EupPbFWI6A9hxPMj+xTM7+c363/4SvwSVzqGQ2M5ptc5+e9XQrzBFxSbmQxfEv1FQ1EURVEURVGUnqMPGoqiKIqiKIqi9Bx90FAURVEURVEUpedsSmn6xm15KazmZ5hbRO35l0/hntCfPW3qeLO7UW+XK6DGseigrjeooR45slBj1uiSRyPj4ClFpIkW0tfFpGtbbKAuPGmjnjTVMMsMKqQBPHEW4hw9z/m0z/NzIeoST89jng0RkQzJBlMxahW9DJ63FdD+0xX0njQSU9vt0t7hkYfH2NFfXj/edcijkS31SW7VFxHG2Ka8pbd4pnY4TrCPZijnRdDAfAOXjqHXJqFcHcNjNxllHD+C+6C3LMxRYDXwWruTvN82xhfPnoa40UQ/hohIs4l91iEtppWQXyVTgTDx8Lqfm0EPh4hIfx+e+7btUxB3OnieLR/r5HcwLg6Y+9S3ya/gV3EOScu6D6TdMLW5W0EU+hKGq/vIG3YKbHc3MHPVhLy3OU3BSYJxEOJ8k9jYRqFnelW23boT4uwY7St/6ALElovXYturd0H8nf/42yG+eAl9CyIis7MViGt0fUILx+PkOHr4tm9H75Lvmtd3qYUeqakdqP13beyjJ4/ieea/D9vulXdgniYRkaeePAZxq4FzexTE8P9bTa1WE8ePutbB5738bfN7xNQVVnze/5+P4NDe+XtH88L84OtxXlymNXNpuQJxP+W4uFDHcX/rzejfefW9mG9LRKR/APNEZalPpxPsT/0l9ApkqGFStrl+LMzj+vDCYfTzPPDIlyB+6IGHIF5yyxAP3PN2o4xmiPWO6Z5HNnhi4njr1+CWH6x5NBzBNlqcx7VveNTM8TM5geM8k0bP7OIC5u6an8MxH0fkgbTNeSJF+SRGJrAeM/PYv5YoL8uVPRpX9sa8XP4JkWvj0Ygor4p9Bf9VN88Gf4bBPBpXVc2V4179WxVFURRFURRFUa4OfdBQFEVRFEVRFKXn6IOGoiiKoiiKoig9Z1Mejb3jrpTSK/q3f57bDq9tS6Me9vNHzDwNnzuNerpX7JiAuH4C9z2v0HOQQxq0io+aexGR4Rx6D6KEdPgx1mGO9gmfz6H3pE25PoqW2WT5PiwzptwcsoC6+nQada3naW/oBd7rXETGSEefy2M9i3k8ZtJCXey8j2W4jtl2ziL+7eYE9ZOF2nrbOdfBo2E7K/+JiCQRtnFAOT/CyPTSxCnUs8c17AtWHfWgYR1zxfQPo3a9M4evi4g0ZtHfEMYoZAzq2BcW6BhOGvtrq1Wj2PRo1JpYb8emPupgW0ztwtdHxlHDT1vOi4ipB20EmDtm106cD9xoEuKm/wLEtot7zIuI+BH6PPIF9IFsHLrx9bFoiLX6PxGRkPbNd128dnEXGX+ziX2QPRki+KEoxDK8DM4DfpevirJlrEdhogzxTAP7VF8fXv+RPah379uJc01mYodR5l4L/xa0OHcLjT0av7bNviKz8dIOdsyh4UGIi6S7T3nkCSxi/oXb7tpnlNH/V/djPamfZVf9BLF/fRJp+FG05sFKqI1cl3Thjimi5tQuIa2xKdaS0zw/WsA14bvu2m2UMVXG9zRJAz9axvWyn+a8ofzdEB88cBDiUh96c0REfB/7V9qhPFLk0VicRZ/RmdOYB+ixx580yvjyk5gH4/iJkxDXaG6PKD9N/6vfBXErMvNMWJTzwWOP6cY8O0bOnWtP2K6u5e+I+XvqiDwBielzcV3ss2Pj6J8YGcL8On974tMQT4zjPWPWtPpJk3JNNQLsCyHlf+DzsCln1NXYKa7kyWDimPMnkVez6+fZ3/fyx7yS36Lb6/w3rtdX6i3RXzQURVEURVEURek5+qChKIqiKIqiKErP0QcNRVEURVEURVF6zqaEph2/KR1rRXc4kEEN2d37cV/0+YapsX3iAu5ffOjSEsT7yKvg097WCW1cX2ube8gnHdSHcn6JhPR5QnE2jbrJWoL69up21BCKiAzedAPEDp36c3+Hut9tVO+p/mH8QAc1hiIiGdI2LgfYVo0F9FeMkddkYgj1zCnW8YuIt4jXZ0cNtbXbyuW1fzfDTWyi3CPaflucVW2034roNWyPKMFYRCQMMZdIKNjOzWXUrttpPEc3j21WmTf9EvMX0XvgU/8JI7xOhfI4vt4mnT/5kJot3MtdRKQdYd4VK4XCVdfDPj40hWXu3Y/ek5kF03uSQhm/WDa+x29g247134IfsFFbmxTMtjtyGOeD8WEca/n0ep6dlmOOka2g5Sdi+yvt6ZB+OuVi/wgNFa1Ik8Z2q019ztDN4jHyDo7ryOqms8U+Vx5Hz0XoYP+wPfQ+DFBOgoD8FL6YBhmbcgFZ/B7yYPjkqbIS8gZ0abuUQ56xEs5p/UN4XuOT2OciyrMxuN0sY/sePGZCCXrcVe20s5lN5HuIJcmGXDt4XayEc0GYc3xfDtuwQzkCwhCP6ZC+faqA/e0A9S0RkRZp5K0I+0Y+g9dhxy7099i70d+VTmH/jHxzbq/No2fsiePHIX7hBfSIPfUM+i1OnCS/Rc2cnyJqm5jyEDjUnTKDOH8Vh/G8krBLrqcY/5YI5+JZvw/olgfhWrNtMCvu6rw3OIB5z8r9eL4e5QsTEWlH2DfmKGfYjsk9WN4kev+Gh8oQh5E5F02/cAji+QrOsT7dn1lGvgmeFzbvS7iSl8H0YLDHo+unKPrq8n1082g4DvY3ng++UvQXDUVRFEVRFEVReo4+aCiKoiiKoiiK0nP0QUNRFEVRFEVRlJ6zKY+G5bhirWq4LNLkjpfR23DPLtyzXESk6qN2+HSF9Oe07/fItm0QOynUBLZDUwfXrqEezyWNacrDvfq5luEl1MCXSJ/cqZr5JxYD1MqV+1G3WiYdtdfGY0xSDoxUl+c/K486VYv2iLfrqH0cdbGtyFIjdsfUdzap7foo18ae7evXuM65QraAKLYkWs1LwVabTAr3Zg86DePzfgX3Tl8MKhDnBssQv/7bXwfxdBM9BOcWMXeMiMjwHrxOMV37KMA29QV9MPkS6spnz2Gd277p0dj3CtpXPouNs7CMeTbKIzgGxEJte6tuajsHhrG/hQm2xdAojqThYd6bHD1clRb2TxGR4TJ+Ju3ge2an17XZ7eb18Wi0QxFnVRZs077lAXl+gsD0kLH+N5VGzXxEeQti6uht8ni0WXAsIgHN6sU+9HU4KdThehnsD2kPr1WniWWEtnlecQf7tRuT14imm4S9AQHOJ82WOc92bGyrxUUc4y3yM+XyeF7z5EELA3MOzFOujUYD39Nsrlz8Vuv6JHJJO544lz02JN/fPzEC8Z5x8v6JyI4BXKcrdWzDZYpTIa7ZxQDHvd8227DTodxTRRzHuTTGFnXhfB7ruLSEOv4vfOEBo8yHH34U4kOHMS/G/ALVm+5fIk560yWXFWv1HQcHGt+feIPoL7DodTs25zCLjsm5UpINuSmSZOv74K7JQUl5Kx0vV8R5xcuXIT4zPW98foG8L80GeTa2k9dvEv2Ec3PoxTl5GvNWiYhcmKE10sKBknBMc+yVvA1fCezZsO0reNK6JGEybR34h5iS5CRGnhXu013O80qnbr3Ev6+A/qKhKIqiKIqiKErP0QcNRVEURVEURVF6jj5oKIqiKIqiKIrSc/RBQ1EURVEURVGUnrMpM3iSWJKsJlZKyN2XitFcdeOAeei5cTQPNTr4mbCFxrOhQTSzZQpo1KuwI1hEAh8NUiHFHQfLsMkYVKJHL7SlifjVZTFo4zGTGTSvTZFrxnPILNfCY444ZNYVkSUyzqeLaDiPA6x42KxAXCWzZhcvuMRkoB6/Ec2Fu7avX49qe+uNaH4Qi7dqfrWo61qUzFGiLgkJM2jUzpTRQF5oYFw7iUazV96E/XHPTZxMSURsTFrkt7BeX/4iHnN+Ho3Y2SLWodlCs3jfAL5fROTWV2HCq1OzR/ANRex/E9vHIO7vR8NdIY+GdBGRVogJ+mpNHLtxgvU6P/88xANlNhibm0X0ZSlRHCVl7GxIdNnpXB8zbtMPRVY3Qggp6ZzrUULRWsX4fJGMrsODlCCOkiuyiZCTobWaZvKyiDKGRpQEzE5hf6jU0aB55hQaZ/vHsU86WeyTIiIJJc6KAxwbNUrG2vax//B5BoF5fUNqm7O0UcIyGU1tuh7VOtbbTtBcLiLSamMZx47jhg/L1ZV6NetbvxmGiMhrb9oj6dVkrOUc1nXPMCZIy3dJ6NbnYr0DF69TK4/jOGzgmtBp0jzbJemX0IYHuRRthmLj6/X5aYyn8Tp+7tGnIP6z//Upo8j5WTQAs5c2pu9UY1r3bTJWJ0YyNBGLElumyNSe4kSpI5igT1y6m+AdEkQkFkp8yQ5gMPxufR/MlfKSXt1Mwk6X4bVmRG3smH3DtXDMZdM0TzTwXqhBm6ecPH0K4sVFM7FiaNwXcqI7MmIbyfXsl329WzK+KxrIaUxQflJxyRwed0kSmFCnjo0EfVhvTrQa0cYCdpcq23RfZdYj2fCvq09kqL9oKIqiKIqiKIrSc/RBQ1EURVEURVGUnqMPGoqiKIqiKIqi9JxNeTRiy15LQBZxtqAQNY59rikAu30b6rQXapicxb+EmtuA9KEpSsDUtsznpICSlNgx1iuiJE1WRImj6Ji+x+dh6iItSrIVOaT9JTFcFOIxEvJ4ZCJTh5+QHnwmU4E4oMRfMcpJxSPtbbNLwrMUafiGScufcdfL8Ltc32tN5EcSeSttHVGbuS4l3XFN7XqxhP0nalUgvnD2EMTHnj+On8/cAHF7AJMHiYi06DoNZjFpkx1jvYf790OczmJivA4lg+wbKhtlBiGWWathoqTJKfSWWBHW4f7PY7IrL2fqk0e2kyfLwQ42M40aaT/CJIGLdfR9DGRIvywifQXUmIcu+Y42aFRbjeuTsK/eaEgkK22R8nDMpV0cY6kUDUIRsS3yFlHsU1LTZhM1ygEnmesik+U/BQnON04G27VSQU/Gpz79DxCXBt8G8c7d6LUTEYmEvHERJ+BD7XmN/BIhzYleypwD7Rj/dvES9jGf5mE37b7s65FvJh4MSQc9fRb9AwsLK/VuNfA6bRXffecOya+Ok1Qar/SZizgGH77fTGx3EyXrtKgP+6QlP3EEvVZ79+F8ZXdZDysXMFleYwl19zMX0cN47AS+/9w8Xtcwh+vQwOQuo8yE5qOIEsqGdKvQoXk6bGKy2qyx7ovYlBCt3cT7kyiD9zfZfvQ4so8p7OLRSITuT0j7H20YV3GX/nutKQ2OSCa9Mg7PXsQ24/4XdfEt+C28Lu0WXocKjSvLwzHcofmvi01XXJd8BnSPF7PXgZc7ziBJdPNo8N/41F3yq8SciJE9p565diQRfsbhhH3kyQoj9paQp8NI6GeuRxa3hbVehtXFx/RS6C8aiqIoiqIoiqL0HH3QUBRFURRFURSl5+iDhqIoiqIoiqIoPWdTHo1UNiepVd2rk8E9pP0Kam7ZCyEiMlHGz9yyjHq8QxXcq39m+izE1RbumVw3xHUibdrX2yMRX0g6SzvBJmiQ7q1Juja3y7NZ3CHNX4d0hrxhMdWp7ZLuMDR1rw3+TJr0mTYeI0MavzhCLWQ+NvWde0dxv/z+FJbZXKis/7uz9Xt4e14onreicw3qqF13U+gZakfoUxARmb70LMSHH38O4qKD2vN8gPueH7rvaYjTO00N6gJ5R3J7yhDvnMIxcP4SXgfWFrsp1FCPbu+y93qCYy9u4mdyNvaFU0eOQfzwo+chnrrRnBbiIo2rEPM/hFUsc2AYj3H6FOqwDy+jP0tE5Nu/9XUQj02hnrwRrmu3Xbk+Ho1MKiXZVT9UJoPnnKK8DZl+M1dI2sXPtCh30HJlmV7Hfl4gHwvnMxIxfR08ZeX7sA/e/qo7ID59DvvHH/3HP4X49d9yl1HmDbdug7hvFPtckuD4dB0cWxZp00PfnF/mlisQHz9xGt/AqXTImxLFOF5bvtmHsgXq5zVaH1Y15a3rkEdIRKSVuGtr1iLp2Q+TZv6h5180Pn+e/FeDBRxjfR62WYny+mSL2KfPXzTn2WNn0GPxxNNP4uvn0fdSa9M67mLfeePtN0L8toO7jTLJdiQZ8kddmEVfyPlZrHe1jp6+oy+gN0VE5MgTD0PMmvjU+D58nX0jTZrzLDMPk02eGdOjsV4ml78V+JGItdpFzk9Tm86QT6+bgYLyXfE4z+XRo+iGlBMoIN9BlzI4f07COVVi9kcgFk0kdrdcMUQcv7xHw+JSyNMR0bV0bLNvWFSPFOf7cF4+P4jhTYnM+2f2/dice8NZP+bVOzT0Fw1FURRFURRFUa4B+qChKIqiKIqiKErP0QcNRVEURVEURVF6zqY8GmI5IqvaMcvCPc1dlHpK2zY1rB5p/rePo1b41HnUzPod2qc6pj2XQ1NjO0/7ABcd1LpZxn7HqGtbJuHZjE+eji65O5zk5XNK8Cc8ykFyiXJ9LIupvaxTvSbJ91EmT4yziHrdURc10Xduw73JRUT2bMOLmGuh9r+zwefhd9FQX2sqwXnxg5U+43dQU9sgWfqlCvovRESml+6HeH6mAvGYdxPEg6ShrVLeDW8G9fIiIinaJ/x8dBTiA2/cAfFCjMdcmsb+OzyO1/XWV5n9L5PHazs/j7k75uZQG5wvoO764MEpiEtT1JgikkTY3lGA9Zy58P+y9+ZRklz1lf83ltwza1+6el8ltaRWS0hCEhK0bGEkMAY8tsEY/wBb2CzGCAMjeQ7IhgM+XjA2M4ztM4gxsgcM2GDwgsECGQRISGhfW+p9requ6q7Kqso9I+L9/qjq6rr3Rdcisqta8P2co6P+VmbG8uLFi4jMe9/Fc7U8ShkG5FsqltCLICJydCvOQ58r4Dz0QydOe2zqlaXXJ4uIJCSUxPT56ZLvKe3h+WNiQi6MpZPF96RSeCyT5NHJUM7K5CSeoyIiYYjHL53FZQaUfbDpfOyT523rh/rrX8Lz5qv/cK+1zleU0edxxQ24zMjF/hBwnhGNqzznu4jI8DBq/ydL2KfWrFtLr+MYeGwYNeS+a1/+2rvxb24C+2BpOtupVln6DAMRkQeHipLOTbVdvYbbMHQc9zeLl1cRERmlvIj9x1Bnv7KAPrX/9jr0TV24bTvUyQyOJSIi3QPo1+m74Hyof4auHX1d6PvoyOAxaM/gjqTS2J9FRHL0twTp2Ut1bKtRypEaKmJf+l4vjkUiIlXS4Q+exP5oPPI0jqIXheIcJJO182gMafP5/mS27j4uz+FsUy1XJWpO+ySbeN/C90ZhM85Hh+Mf50t4tE8UjyVJoeyIlJ03wXk5IjyWsF+C3k1vd13O4bBWacGf4cwJj+7xXNoIN7RzejxaZobyQnyf+w7WQZOzjuJ2hO/babtn+UDCOA/OGdBfNBRFURRFURRFaTn6oKEoiqIoiqIoSsvRBw1FURRFURRFUVrO4jwaxp2ZB7lO87uzT8HKjhAR00D9V57mTO5pQ03f6AjqRydJTzru2c9J95HfoZNkZG3kLcmRIK/p4gcmAsqviPFP8J56PN8x+USy9ieg8h1bO5el7YqaqHNtkAA0Q9vZnidPRRMzSURESmO43ok2bCsnON22kzE5KWebYvm41M2UFrc8cQxeC6voESiWMLdBRCSqoc+gPUua2vE9UOe68Li4lGGQSNsa27Ym6o3dftQXd/ailritHY/boeeKUDvUN0aP232+HuCc8P0r0HNx+CieqydPYFuZBJ53fbYEWlIpOr/pvKlTlszQLuxfuQQu9LxLN1jrKJFv48QYHp9E6nSf43nHl4qgUZNT1rCgQXpimvo8myXjmogkaJ58j3wCSXqdddisy48adju4IZ63QR3f02ySXn0MtebXvGwr1FdddwXU99/ztLXO/Qcxi2XFYdROp/J4rrS3d0HdID33xAT2URGRScrO2XLhJqg7OtB31taJB6Q4jn0ybq76tVtWQV2r4PlWaUxtVz1Wf372KY4VJTWdYcRxS06I176kg31JRKRBmTorurB/rd58KdQbt18JdaEDPRlxGQNteRwb+rvRo5FkDTzN1c+ZAw5dL8M4b0KIfbpB+Qsu6dWzSTxH+tvxPLzqCuzzIiKpfAfU//5fd0N9aPAgblKE15uAxkDXw20QEfEFj5k7h2eD/V5LQb1cEtOY2qagivvnhOxDsI9TGGKnZR+BobHJ5/tIKk3KvlgFhvsCrtNY91+0jeyjo/62EGsMe8wiWiefNVkf15lN2NvYlsVzN5vl/kT3keTh4HPVcMCI2P4U9tAkkqfrZhDK7iP2fWQc+ouGoiiKoiiKoigtRx80FEVRFEVRFEVpOfqgoSiKoiiKoihKy1mURyOMzMzcuYbm0HVIy5X0bX2oqdIcvaR168vhZx558imoTw7iPOiBY2/+CGnhJihrI0s6wixp0lK0HybJmkn72Yz16r6P2suQtHATpKUNaN7nOO1ckldLHo2IttulCagjmh+5WCpa6/AMLjPloh7XiU63d2kZPBrVyeMi4ZRO0fGwLyQKOO90Ox9YEanvQ79EoRfbpNmDeRNOAnXkK7suhvrIUfSJiIiM70afwYWrLoQ6n8fjsmY19s+Tg7gN+57B91cnbF25l0XtejKD2tn+lbgfx46gp6MekR4+RoTK84C3daBedMOmTqhH9hyGOmiinnRi1M4hODaEes96WIS6u6dj5t8hC9SXiEo1EDOdEdQMqP8EeA42GnYfzGawbS2vCWl7PQ/HuJA8GU0eU0WkUsK2OX4UPRj9lBHQ2d6Bnyed9LptvVCP1bAWEUn6lFtA0t2mi9uUzGAdkhfOT9khEP2r0Hu0fiP2Qc724cijRhPPnfEJO8sll0dfTSZN25WdGtsDWXp9vIjIiraspKe9jU3qO02nA+pUDmsRkUN02iXbsS+89GWXQ91FuRrNgPXr82c+cd8o2LcGgE/ngMtZCzH+T+tgR3RNjc6cRzH1Byw72ux8kPM3oa/smecGoD56FD0aAW0De4LismKsiAfyC8x+OVoGn1oU1CSa9lV0kYfTJ59BPWaINhEe/AT5VJJ075SkNgsjfH085jqQTlBmTxrbudHA7QyadK9E/Zc9G3H5Jewj8ihTJemTZ5ayr/opS6Y9Y9/bppPkGaXziu9D+drB96X8fhERh7zAHvk+vFnnYr0RiAj6Ws+E/qKhKIqiKIqiKErL0QcNRVEURVEURVFajj5oKIqiKIqiKIrScvRBQ1EURVEURVGUlrMoM7jrJ8SdNtokyA/jcO3FLJrMS2G5BPVAAQ2A3Ql8f4IC19oi28xSI1OYS3VAhqUyGX2q7PMh47YXzG8EcsmAzuYh43BAEZJwbMNvgtozQ/uVp0fGnENtZ/nGbCNZnULv6PBI1j19fBrNpTdD1sZ2idSmDE1eCl2NdWrTZMEO8hm4aCXUTTK0BylsxGgcA/omhtF0XSpiLSJSHcI++uSDu6DubqMQnQSaLa++Hs+B9Rv6oe7qtU3UbX1ois10U5CPi0FmJ46iqXF4FA1dUeqQtQ5pUrgUmfqSWawd3CQp5MlEGk1aqyiRiTkgA3E6fdqoW68sT2Df+ERV6kF83w9DPO8r1Zhwzwj3qU5jGhv4Umk8lskkNmypgpMgiIg0aYwqdKGx9ZodaPhdux5NrW4Ct7HQhcGql16JExyIiGST2G/b2vDcqQvtJwUVOmRsTMWE6bFRttbAfW82caxOZ9DYXShgOyRT1ElFxEvidjXqeL6d+kwULs93dOu72ySbn9qPMML+VqRrW4VM/iIiWzpx0oZNl2+HetWqtVA3qE09j0zVcRtJf4wiDjyjYDE2e9P3n3b4r73W+czdTMShbLSNKU7fFJE2CkjbvBbbau++fVAfGcUZEYxP47JjB/axQdelfZ89Cc/csXNnB0eaMxOD9HbhmN/bjfsTRTFhooLnHI8DjH2caFKSih2cmUjheMVtWK/hdjXokjqf+TvODM7BiskE9uFMksKqOXwvg+OnFxNGzUHQLp2L3Jauy/2LJjqKO0ms1dJnZvc/Z+ETsugvGoqiKIqiKIqitBx90FAURVEURVEUpeXog4aiKIqiKIqiKC1nkR4NT1x/6iOeoWcUDpmL9WhQwAtp5/IO6u1eRpr6cdLjPXoIg8dERE5QSkyNtJd1UjZGtJ0RPXuF9HmXzSgiwrknrju3QNQjfwVl60kmRreYJb1dwceVFlxs/25aRJY2MiG2vi5J221CastZevLaGXTqZ5P+jC+Z6SCbSopCEgX1r8a3n6GTnagTb4yhZrsyjO8f24lBZ8kS+ina6t3WOgLSZtYN9tkoRC3m2HHUmU828f0bN2CgVr1pH7fRw7idbgl3JE0Gng0bUJfdvwq17GM1W7s+MoKeiqiB7e0l8Xhsv2o9vh6O4eclxt8S4PFx6JjODhPiYKGlIpKkRDKlTU5QAJLQOVoq4/6IiIQkCC6X0BflUb/t7KDAJNJ5S4zPIJ3F7VhBvoNcD5qvMgUe82h8inAdfqetLc+RLjrh4zqbVdxvN8T+EpBfamLSDtOrU9uxr8On/eRLUipN+5Gw96Ncoe10yRMzOXW+1qu2V2op6M6nJVeYOl+bDdzfUgXHhuzF6MUREVnTg96Z8zdi+GKSrn8uhZ8l6FqXiLHSsL2BPYy+w9dUer91PaVtigns4wBhQx5EyqKVJv3B0DI9sXcsl8G+cMm2rVDXSfN+1w8egnp4HMd6NyYwje8N2IkBHo6YwOKzjjEzga4+n39UJxK2TzLh8Xg1d5AiB5pyKGecx6PQhtfYiK7BjnVssXZcXKdj3fPFBN2xt4Zr6/1zf96x+kFcIB+OXxwIyR4Nx2EPR1xgH3uw+D7/9Ou+b4fFngn9RUNRFEVRFEVRlJajDxqKoiiKoiiKorQcfdBQFEVRFEVRFKXlLE7kl0yLJE/pvlAr5/Dcwr696CBATVdEq2dPwABK7eTV21dB3Z+wfQJ7juPc1cfLuM6xADVotQh1bXXajYDmCjYx2jnXIx011VZOBulJafpzycX4W1K03hTlRrR5qCvsJA9HjuZlTifsdbC2luelr8zK5qgug0ejK+iQXDClj68PoNZ4+EiR6uPW54Ms6qr9RjvU7lFsw/QoCXtJry0BboOISG4zZcFswmPt0TpluAjlsX243eEYehn6NtDnRcSlPpypYy7C6Dj6ABIh5mR092NWx4ouOychrB2F+vBR3M5MHve7sxfbKqihXtdnsbeIyAnyU43j8WjWgln/Xp4cjUbTiNuc2s6Azo9qFety2fahpBI497zn56jG9xvK1KkHuN/10D4Pmw083qxXT1GWS+CgdrxBbRvWcR31su1PaHiog2b/yolR9A11dXZAHdH148TQiLWOWgPX0TOA+TAhaZhHJ9AXxOEKbsw4OzRIXiIaq8PpbIBGzZ6/fykwYV1MMNX+Ncr4yJA/7KLNmPMgIrKyE8/DDOnRrbn5WZ9OpRuTKcAfYb063ysYOpUj9grS+4OYDBPW8jdD/Ey5gX24VMO2q1IfD43dN6p07oWkkR9YvQ7q7s4DUJ+cOAy11bYi4pCxyDE8Ts6q2YS0BDiuK860Z4bvc5JJbI902vZA+dRm7N/hnAw+roZezybQXygikqA+HNAyHPKzcmQFexcc8gjxNk//EeHThnPmLB8S+Sti/DvC956WJ4OXMc/rrn0ecU6OGN730zWft3Ohv2goiqIoiqIoitJy9EFDURRFURRFUZSWsyDp1KmfLidrp6UBYWM+6ZT9s2BAU8+GDfrthX6LiUieVaL3x8l36vRTd4PqJkuj+GfZeV6Pm1STfz7mqfasHz+tSHt8vRnF/KRKP7Nyzftdo6ZJhNZv3tY6eMbikNZhZrV3ZXp5/LP22eDUOiqz5AoNmoayWkUpQ61mT73GMjienY37Z537J8kMJGaq2TpLCmsknUrgSnm6vmbA0/nRdLk1e51BROus0n7wlM8VkvyUse0CY8tCajR1ZqPKkgueP5KmTGU5TmD/7tqgThuRNKBeOf2Z+vT6l6L/zV7P7GlN3bif0GcRNwWqafK5j+1AagTx6Q8s5amFdjs2WW4g/B46dvSTPB9blk414vaLfnIPSQ9aJ6lRjZbB0qlGzPnbIKlanc55L3DnfL3GU9d6cX2QpqM+o3RqaluWuv9VSqenma7Q/lXquD8JkumJiJR9/Ezo8XlMMmDqGx7tboP/IHYfZhmIF3sVnf1+kmtQbU25KaePyylYOlUh6VSZpVON+aVTNRqzKk2cvrpWwWmjgzpKEqMmT89sr4PVVLZM53QdNaeWv5TX4MasaaitQ8/HLWb61JClOTy97TzSqTpNgx059vUwMvNJp6g/zjN9sq2WX7x0yqrniURYmHSKptDlZdDHrdd/TOlUrbHwMdAxC3jXkSNHZM2aNfMuTPnp4/Dhw7J69eqzug7tf8qZWIr+J6J9UIlH+5+y3Og1WFlOFtL/FvSgEUWRDA4OSqFQsEJDlJ9OjDEyOTkpK1eujH0ybiXa/xRmKfufiPZBBdH+pyw3eg1WlpPF9L8FPWgoiqIoiqIoiqIsBjWDK4qiKIqiKIrScvRBQ1EURVEURVGUlqMPGoqiKIqiKIqitBx90FhC7rzzTuno6JjzPR/+8Ifl0ksvnanf+ta3yute97qzul3K8nH99dfLe9/73jO+vn79evnkJz+56OVyP1KU+fqaopxLLOTa93zHR0VRlo6f6AeNhdzYn2t84AMfkLvvvnu5N0M5R3jwwQflt3/7t5d7MxRFUc45dHxUziX0C754FhTYpywd+Xxe8vn8cm+Gco7Q29s75+vNZlMSicQSbY2inKbRaEgyaYfCKcpSMd/4qCjK8nNO/6LxzW9+U6677jrp6OiQ7u5uefWrXy179+4VEZHvfve74jiOFIvFmfc/9thj4jiOHDhwQL773e/Kb/zGb8j4+Lg4jiOO48iHP/xhEREZGxuTN7/5zdLZ2SnZbFZe+cpXyu7du2eWc+qXkH//93+X888/X7LZrPzyL/+yVCoV+bu/+ztZv369dHZ2ynve8x5Irpxvuaf42te+Jlu2bJF0Oi033nijHD58eOa1+Z6IoyiSP/7jP5YNGzZIJpOR7du3y5e//OXn2cLKuUAQBPLud79b2tvbpaenR26//faZtE2WBjiOI3/zN38jr3nNaySXy8kf/dEfiYjIn/zJn0h/f78UCgW5+eabpVarxa1K+SkniiK59dZbpaurS1asWDEzJoqIHDp0SF772tdKPp+XtrY2ef3rXy/Hjx+fef3U2PSZz3xGNmzYIOl0WkREvvzlL8u2bdskk8lId3e3vPzlL5dyuTzzuc985jOydetWSafTcsEFF8hf//VfL9n+Kuc+8/WfP//zP5eBgQHp7u6W3/md35HmrIT4M42Pr3zlKyWTycjGjRv1+qgsiiiK5M/+7M9k8+bNkkqlZO3atTPX2dtuu03OO+88yWazsnHjRrn99ttn+uOdd94pH/nIR+Txxx+fuee88847l3FPziHMOcyXv/xl85WvfMXs3r3bPProo+YXfuEXzLZt20wYhuY73/mOEREzNjY28/5HH33UiIjZv3+/qdfr5pOf/KRpa2szQ0NDZmhoyExOThpjjHnNa15jtm7dar73ve+Zxx57zNx4441m8+bNptFoGGOM+exnP2sSiYT5uZ/7OfPII4+Ye+65x3R3d5tXvOIV5vWvf715+umnzb/927+ZZDJpvvjFL86sf6HLveKKK8x9991nHnroIfPiF7/YvOQlL5lZxh/+4R+a7du3z9RvectbzGtf+9qZ+mMf+5i54IILzDe/+U2zd+9e89nPftakUinz3e9+9ywcAeVss2PHDpPP580tt9xinn32WfO5z33OZLNZ8+lPf9oYY8y6devMX/7lX868X0RMX1+f+du//Vuzd+9ec/DgQfOlL33JpFIp85nPfMY8++yz5oMf/KApFArQjxRlx44dpq2tzXz4wx82u3btMn/3d39nHMcxd911lwnD0Fx66aXmuuuuMw899JC5//77zeWXX2527Ngx8/k//MM/NLlcztx0003mkUceMY8//rgZHBw0vu+bv/iLvzD79+83TzzxhPmrv/qrmbH2c5/7nBkYGDBf+cpXzL59+8xXvvIV09XVZe68885lagXlXGKu/vOWt7zFtLW1mXe84x1m586d5t/+7d9gbDQmfnzs7u42d9xxh3nuuefMhz70IeN5nnnmmWeWYe+UFyK33nqr6ezsNHfeeafZs2eP+f73v2/uuOMOY4wxH/3oR829995r9u/fb/71X//V9Pf3mz/90z81xhhTqVTM+9//fnPRRRfN3HNWKpXl3JVzhnP6QYMZGRkxImKefPLJeR80jJm6sW9vb4dl7Nq1y4iIuffee2f+duLECZPJZMw//uM/znxORMyePXtm3vP2t7/dZLPZmQuoMcbceOON5u1vf/uil3v//ffPvGfnzp1GRMwDDzxgjJn7QaNWq5lsNmvuu+8+2Kebb77ZvPGNb1xIEyrnGDt27DBbt241URTN/O22224zW7duNcbEX0jf+973wjKuueYa8653vQv+dtVVV+mDhgLs2LHDXHfddfC3K6+80tx2223mrrvuMp7nmUOHDs289vTTTxsRMT/60Y+MMVNjUyKRMMPDwzPvefjhh42ImAMHDsSuc9OmTeYf/uEf4G8f/ehHzTXXXNOq3VJewMzVf97ylreYdevWmSAIZv72K7/yK+YNb3jDTB03Pr7jHe+A5Vx11VXmne98Z+s3XvmJY2JiwqRSqZkHi/n4+Mc/bi6//PKZmu/flCnOaenU7t275Y1vfKNs3LhR2traZP369SIy9RP/82Xnzp3i+75cddVVM3/r7u6W888/X3bu3Dnzt2w2K5s2bZqp+/v7Zf369eCf6O/vl+Hh4UUt1/d9ufLKK2fqCy64QDo6OuA9Z2LPnj1SqVTk537u52a8HPl8Xv7+7/9+RlKmvPC4+uqrxXGcmfqaa66R3bt3gyxvNldccQXUO3fuhH53ahmKwlxyySVQDwwMyPDwsOzcuVPWrFkja9asmXntwgsvtMamdevWgS5++/btcsMNN8i2bdvkV37lV+SOO+6QsbExEREpl8uyd+9eufnmm2G8+tjHPqbjlSIic/cfEZGLLrpIPM+bqU/117ngse+aa65Z0PVVUXbu3Cn1el1uuOGG2Ne/9KUvybXXXisrVqyQfD4vH/rQh36s+9GfFs5pM/gv/MIvyLp16+SOO+6QlStXShRFcvHFF0uj0Zi54TfTWnYRAe3mjwsbbB3Hif1bFEUtW+d8lEolERH5+te/LqtWrYLXUqnUkm2Hsrzkcrnl3gTlBcqPO4Zx3/M8T771rW/JfffdJ3fddZd86lOfkg9+8IPywAMPSDabFRGRO+64w3oQnn3zqPz0Mlf/Efnx+6uiLIZMJnPG1374wx/Km970JvnIRz4iN954o7S3t8sXv/hF+cQnPrGEW/jC5Jz9RePkyZPy3HPPyYc+9CG54YYbZOvWrfBNx6lv1YaGhmb+9thjj8Eyksmk9a3w1q1bJQiCmYFs9rouvPDC5729C11uEATy0EMPzdTPPfecFItF2bp167zruPDCCyWVSsmhQ4dk8+bN8N/sbyKVFxaz+4yIyP333y9btmxZ8M3Y1q1bY5ehKAtl69atcvjwYZiY4plnnpFisTjvuOg4jlx77bXykY98RB599FFJJpPy1a9+Vfr7+2XlypWyb98+a7zasGHD2d4l5QXCmfrP84XHvvvvv39B11dF2bJli2QymdiIgfvuu0/WrVsnH/zgB+WKK66QLVu2yMGDB+E9cfecyjn8i0ZnZ6d0d3fLpz/9aRkYGJBDhw7J7//+78+8furm+sMf/rD80R/9kezatct6sly/fr2USiW5++67Zfv27ZLNZmXLli3y2te+Vn7rt35L/s//+T9SKBTk93//92XVqlXy2te+9nlv70KXm0gk5Hd/93flf/2v/yW+78u73/1uufrqq+XFL37xvOsoFArygQ98QH7v935PoiiS6667TsbHx+Xee++VtrY2ectb3vK8t19ZPg4dOiTve9/75O1vf7s88sgj8qlPfWpR35Lccsst8ta3vlWuuOIKufbaa+Xzn/+8PP3007Jx48azuNXKTxIvf/nLZdu2bfKmN71JPvnJT0oQBPKud71LduzYYUn1ZvPAAw/I3XffLa94xSukr69PHnjgARkZGZm5sfvIRz4i73nPe6S9vV1uuukmqdfr8tBDD8nY2Ji8733vW6rdU85R5uo/TzzxxPNa5j/90z/JFVdcIdddd518/vOflx/96Efyf//v/23xlis/iaTTabntttvk1ltvlWQyKddee62MjIzI008/LVu2bJFDhw7JF7/4Rbnyyivl61//uvVAvH79etm/f7889thjsnr1aikUCqo2kXP4Fw3XdeWLX/yiPPzww3LxxRfL7/3e78nHP/7xmdcTiYR84QtfkGeffVYuueQS+dM//VP52Mc+Bst4yUteIu94xzvkDW94g/T29sqf/dmfiYjIZz/7Wbn88svl1a9+tVxzzTVijJH/+I//+LHzCBay3Gw2K7fddpv82q/9mlx77bWSz+flS1/60oLX8dGPflRuv/12+eM//mPZunWr3HTTTfL1r39dvyF8AfPmN79ZqtWqvPjFL5bf+Z3fkVtuuWVRIVRveMMb5Pbbb5dbb71VLr/8cjl48KC8853vPItbrPyk4TiO/Mu//It0dnbKy172Mnn5y18uGzdunHdsamtrk+9973vyqle9Ss477zz50Ic+JJ/4xCfkla98pYiIvO1tb5PPfOYz8tnPfla2bdsmO3bskDvvvFPHK0VE5u8/z4ePfOQj8sUvflEuueQS+fu//3v5whe+8GOpFZSfLm6//XZ5//vfL3/wB38gW7dulTe84Q0yPDwsr3nNa+T3fu/35N3vfrdceumlct9998ntt98On/2lX/oluemmm+RnfuZnpLe3V77whS8s016cWzhmtslBURRFURTlBYjjOPLVr35VXve61y33piiKMs05+4uGoiiKoiiKoigvXPRBQ1EURVEURVGUlnPOmsEVRVEURVEWiirBFeXcQ3/RUBRFURRFURSl5eiDhqIoiqIoiqIoLUcfNBRFURRFURRFaTn6oKEoiqIoiqIoSstZkBk8iiIZHByUQqEgjuOc7W1SXgAYY2RyclJWrlwprnt2n1e1/ynMUvY/Ee2DCqL9T1lu9BqsLCeL6X8LetAYHByUNWvWtGTjlJ8sDh8+LKtXrz6r69D+p5yJpeh/ItoHlXi0/ynLjV6DleVkIf1vQQ8ahUJBRES2X7NdPN8TEREnwmnknDCCOm6WuXQuC3VbWxvUUYTLKJVKULsOLjSVSFjrqFcquM5kGupkAp+8UjlsgqSfwuXVA6hrtaa9zkYVan7iz+XyuM4UriMIcZmNhr2OVAr3Y/TkONTDwyeg9mg/HA/byot5Am0GuK+NRgPqYrE48+8oiuTEseMzfeNscmodf/CxP5Z0eqodVvdh3/ED7Ctpz27DtSsH8D3ZHqiHJvG4feeHT0BdHpuAOl/osNbxrZNdUHsXXAf15CNfhnqH/zjUb3rDr0JdzeA6TFS21unRaTx2ogj1nf/3c1BPFLHv3PK+d0O9bt1aax2PPvoo1Bs3b4I6Q/0zl8vhNo2NQV0u2/vR29s752eSs86bcrksr/qF1yxJ/xM53Qf/53eek0x+6t8mDOb6SOw3fzwsOuLwH+Ze5k/o7J1LMi0prcKYyHpLU/BvAV3npDlV18qT8vuvvnTJ+1+7E9+vRMS+6Ma8z5nnm0de9nzfVC7kuPEyF/uN+EI+z3+L6C3zbSXvx0LWcTa+2ed7IN6uMAzhtWK9uaTX4F/9yD9JMj11HxeZEN5jtYYT8l8kJLW+EbwvSdCRcsvHoM42hqDevsW+wR0fxXuh+x94AOpGDe/XOjs7oT51jzGzTXSfmU7jvZWIyPnnX4Cf8XEZHt1/2QM5HvfYa4d1rlFbuXP3R+5bs/vSmf4213lRrVblPe95z4L634IeNE4t3PO9Mz5ouHyix5zZvo+r4wPIDcHv5weNRMLe/JDXYa3TpZoeNKxtwv0KQ3vHwgiX4dAB53UkkrgOh+5X4gZvbituG8/z5qydeV4XEYlovfyeuIvOUvyMemod6XRa0pmMiIhks/jQ6gd4gmQ8u2/k6UE3QzfDE3Ss0+kM1EGqMefrIiJ+CtfhZfAk9OjBN+UnaRtxm7wsPqRG9r2R+HQaNyq4nfP1nRy1ZSGP6xQRyWZwX3k7M9QWeVpGs2k/+DH8GX7QTcUM8Ev1M/6p9WTyBcnmpx5yo7PwoDHf7uiDxo+zEiyjmAcN33rQoPc0578hPRucWo/jOAtfZ8z7+Dp9pvUs9P0LOWrL8aDBd73zPmjMt7wFbsePDS3TurWc9fqpnrmU1+BkOivJzNTYH0XP40HDmedBg8YBN8RrU8rF62eGrl0iIo0qXov4+sdfECWTyUXV/EWxiEiGro/JBNYv1AcN/szzvQdUM7iiKIqiKIqiKC1nUcng9UZJvGjqW+4UfWNsfxtuy5qM4NNSuTIJdSKBT46ZLMuYSKLk209S+Xb8VjTp0i5GDXodn9ja8vjEXC2NQO0a+ykwk8Ht5O/JGkGD/oBlNotPv44b8/0LffuWL+CT/IkT2BYsg/L4J8uYbxD5W+e5fmHi15aCS84/b0aSk6DjNjxYg7qjf5X1+cjq7tgm3R0ox3r1jTdAffzIINRHBvFnXRGRzSQhKiVGoe5fh+sIh7DNf/Cje6HO9OBPw+dtsnWy+c4OqO/d+SOo77nnHqgdOnbfuusuqP/bL/03ax3bLr4I6lqVzkX6divpYdsWqI/nM/a3Qjl6T9JDaVuzOevECeb/heRs4HuO+N7UuRbN9z3NAr7psb8FdOZ83V3IaXcueDXn+QrZWDqm+Tfa+sw88K9F/Hlj7OPn8nWMtiua/kgwz7eHZ4s5f9F4Ht9sc7Nb9TyrWNAvGlTbv6XP/QnDbb2AXwrnO4+eD/avJvTr1rytQfsV0+fn+3Z4tsrAWYYUdEcCcczUvYUb84vgbPhcmvo8EtE9IV02JJnGe8KEj9eIb9z1DWsde59GOTLLdB2HFCjO3ON4QNcaloyJiKy8/4dQ33DDz0F98UXboW406SaQf0kN7Lbley6PGos/E9A94EJ+Nbbub+mANWatoxnW513ezHIX/E5FURRFURRFUZQFog8aiqIoiqIoiqK0HH3QUBRFURRFURSl5SzKo2EknFEh0my2EtRRr5VO27MBeBH6NjIZ9FPwdLcl0tY1AtThp7KohxcRySRQ++2RLK1eRQ0az2Q1XkRNfURTz/IMBiIiTdKxsXaOZ2/yfazrDdwvXufU30grTO2fSqGWMaiiPm8hngrW9PFnZutHlyO0Z1Vv98yMSCHNHBFUsQ0d1+5/PGGY4+CxzFEbOtQ32jeiX2Ltyj5rHZsTOFXesyfxvOhci16H/Ai+PjSEnqAKTdVnVq+w1plKoW51zboNUK9bi9PV1ss4FfC2bZdAXavhFNEiIpkUDhUFOveCAPfj8P49UOfyOPsWz+QhItKs4fnukUA0iE4fcyeae8ans4XvOOJPa8Yj0lgvyewvC/lq6BzwaCzWnbIgtbmlaV+cRt0sYCoingGQdfDR9LFfLo/GXLSi/9lNMveUufPp22M+Ig59vznfVkfzzMQUu85Fzub2fLCXuUjPxAJ8SfY6Z12DF/3pH5/Z4998Doy4GfI88iK4DnoVJoYPQr1335NQnzyyC+pgYthaRyHNMznitafRnHsK14BmsLRm6Ixsj8Y+ut6V/gWvsbUaXh/5msszQUaRfQ/I53doRUrMvV/W8mI8NjW6NzgxhvfDw7Puj+t19WgoiqIoiqIoirKM6IOGoiiKoiiKoigtRx80FEVRFEVRFEVpOYvyaGTS2Zlk8CZpzlyX5yaOUxDSPMA+PudYkfYk8svkUBdu5VOISDLBWjdcRqGjHWrfQ1Hu4FHMRkhR0rMbkw/i8NzDHu67R2nkTdrucgl1cUnXnmk8wd4Tars2yg9pBLjMegPbPs5rwjpB1uDNjpqPS5U824SNqgSNqbapVDDHIZPGvuHHtCFrFh0X26BRRY/A+OgY1P196MlIZ+11dKexDVdlcB1pOi2iwnlQr+7BnIxx8p5EdbvPB3RsL7oY9Z8vfelLoe7pRC/UjTfdCPW+fag3FRE5PjgEdYEybqplzMQZHcO2a+9A7wp7bEREfB/bij1DlVn60QrleCwVnnt6rndbg3z257X/qf5mqMWidM5+EhGJqM+5IV+Tps75+TIEzhaROKf9B/OlyMf9bZ50azvXBc9Jl4MOYlYShdxLcZzknCifshQsLw1tY2QlVYm4Dh8n1q/P3Vh2qvJCMi7YvzL32Wl1t5hNmm8VJjr7Y8xc+M7UfyKn/UozUBvHhEiL76D3YO9TD0C974kfQF0ZPY6rqOH1r7cT73tERPr7BnCdaU4Kx/44OTkBdRBytgfuSKNpX3si+sxYEZf5b1//V6iPDB6Fevs2zNlob++w1pGkezar+Q3naOD921hxHOqR4+gHFREZPoZZYWPUNrVZ/mHOXZuLn+rrlqIoiqIoiqIoZwd90FAURVEURVEUpeXog4aiKIqiKIqiKC1HHzQURVEURVEURWk5izKD+356xjAc0SNKrg0NN1Uy1oqIVGtobGUTjkPOp4jNLRTSlcvhOkWmQgVnk6FgMY/M4iE9axV6OIQN3z85URLGuGS0JsNc0+B2h2Qe7+nvgToptsk4onCWiA5As0HrCDl8j8LPgjgzLu5ro4HGq2z2tDE+jPn82eaJZx6XbGbqmFfLZMgKsH0yKTsQrq3QAXVXBxqwqhMYTnN4L4YDORQYmcvaoYCZRIneg33U83E7/Y5uqBN5PK61Q/uhHhw6Yq0z27kK6rESHrfzzz8f6pt+7nqo28h41t2N/VFE5PiRQ1AXR9A01kbnokt9vDJRhDqTtc/dRhXNa1bo1jkQ2Oc6rrjTpk/DBlTLDB5rx13U+vjdlgEwdnnzGEYXaWLn42Cel+n9x3dyzxu6Nk/z83abmOCtsIF9sFnHfub4yen3LdwI2VI894wNYRu55zc0uw5da8j87STo+ulTXbDHihXbXwJ1rg8nvDg6SvcBJ3BMc4/vhNofwzHQaaCpVcQOzY3o+sdmcStcjmZ2WFjA3yL7NK0j/jxicz4b46MzvHNpcF1PvOmJVvj+jO9bvNA2TT/32Pegfur+b0NdK6FBmW8zfKH+6dqhzd29/VAXuigslibSGZ/IQV0pY2BtLo+vx01kwkHRbPwvUvh0pYqTpzz66I9weTGB1z6Z0nu6u/AzdK87TEb6wSEM/x0btyeWqdH9sOfjfqUzpydTcnz782dCf9FQFEVRFEVRFKXl6IOGoiiKoiiKoigtRx80FEVRFEVRFEVpOYvyaIiTEHGmPpLPk3aLwrbiAuGaEWrfEj4HoaA+1grqId13OmPr2DhIsEzBXuUaLjObx8CXiIIHyyUKhmvDwD8RkUoZtf3CIYFtqBGsk/eBvRBx4ULJJLZ3nfwu6Qy+HpH+2KOgwTidIa8jlcJ6dkDLcgT2HTl6UNLpqW3y6Rk5SxrJetnePtcKWKLgKApW9Ei+bPuO7HWYBB7L9jTpckkDbVLk4Uhi/1uzbh3U2TYM2xMRkTT1rxEM13vRiy6HutDWAXVI/p6VA6hxFRGpTayH2id9boraivXHjQDbKuHbPiSrT7HQddY6S2XbA7YkuN7UfyJiaDzyhc6pGAm2mSfUi+FQQI/GhjBGTB4t0kPhUACaHV3GHg0bXue8wXB8Ks67lTHQMtgXZI1wHvsT7PO3WUePVQOHWUmlk2dY+BIx65yID8U9zYLalIJNT3lQTuHRNSBb6IX6/Bteby2y/bKfgfrkMdSGpxN4ja4WNkNd70HvXJ08G+nD91rr9Cvo8wgdChQ2OK66EY/L6LmJnIUEMlomIHzVNs3M9elYeBx1Zun0nZjAybON6/jiTt8D5mgPwhp6Ap5+GP0YIiJPPvRDqKuTJ6E2EY1FdF336XqZyqF/QkRkw8YNUHf2dEDtkS+JQ52rdM/YoODiw0dtn2SF7hNX9eE1NEVeh0aO+icNiOPkXxYR2blvL9SbN2+Fur0T/VJDxzE0d2QMx7Z8G57LIiKdeQzWbWvH+932Wfcf9VpNviVftJYRh/6ioSiKoiiKoihKy9EHDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nIW5dEIwkjMtHaRrAxSo4wB19jzjEdNfE+ddN4JS6+OetE8+SmcmLyJMKQNYx01acPHizifsROidq5WQl1boYDbICLSlUcdmxOhTt/jDAuSBlcq2C7lmIyKjnbcbpf8BE1aZ4Y8NJUSHg+HJ+QXO1uDpIsyezeiZZjE+9KLt87kUljaddJdxulXUynUczqUf9Lehcdx8/k4/7tPvqMEmzhEJE0nBvuIDOW4OPT+hMHj6uTRf+HkcO5sEZGTk/iZi87rgLq3G/tslTwZ9Sq2Q77N3q9Nm1FHHVbIA0QaZ86YCOl4OMbWQEfc7+k9zqw8molJO4djKXCMmelbDn1P45j5v7dZrKqabAXSKNF4xW8QkWQG24bbnn0iZh6t/0JyM9xWf2c1f8SApXHnj1gZI3R8jLGzdqplzGioVVB7nUpMfyYk88YSEUXRjDfDdRff5rZXhvImIrz++Q62UVsGP99TwzwdEZHkTtTmV8dxmeel0Gc26eG4fDjCsWQowDGv1Hu9tc50A30cydFnoU7U8byJ6AIS0MXOiTXhzNPjrJyMuYk7flE0jzdkOcIzZpFyp/4TEWmMoTf1e9/5MtSTI5h/IiKSTeEOZNIroM7R9S5DGRYu+ckKCfsWtp/8EZkc3gtlkrjMdArzJ9rJl9AMsD9279tnrfPQXvxbZyf28WQd7x3GJ9Cv3KB747EJOytmlO5VN593IdRr1q6H+ocPPAR1R89aqFevwVpEpKsDfRt5Oh7+rHueSmXhPkn9RUNRFEVRFEVRlJajDxqKoiiKoiiKorQcfdBQFEVRFEVRFKXlLMqjYYwRM633rTdQd5lNoQbtlJZ+NmECVYsuZTv4adSzHxvB+bcrddSE5bJ2pkA6gXq7oFml12mXI9RisnY8k6C5opu2NjdPOvxGlXIyKNvDI59ImjXVMR4NVm5mc7jOWh23q60NdfnlErZlJm3PP20ifO4MSbcKutZl0Iqev26jFKY1m9yGhnTosfpXS0OPy8jScXR78P3s0Uj69unjhnikWAvMm8DZHh5ppoXmtW+6dnZMcBL1nLkc6ipTnFlB58jJUfIlTVCejYh05LCPRg6eV46h84L2Mwo5w8A+Pi7N6R+F1P9mZUhEyyRW9qUhCZk6v6OI/DYOe1tislxofGEdN/fb8RGcm/7ur6IOupC3PWPnXXA+1JlO1BznelGHm82jBj6krA5DmQJx307Z/hTOQIn50FzLXMDhZW9JaJ3zNCawV8XY5+/YScygObD3Kahfcs0rpz7bRO/eUuHI6aaxfGjUHvHH6czZNCIiJsRrV7OK8/mfPI7j08lnbU/B9Zdug3p1G2YBTTbxWjR44mmoK/vxGHgBjlfVrS+11lnsuwHqxr4noM7u/jrUyUnMJHCb3C52B7S8SpzDwsZB6/DQeRXjI5wvGyXuM0tJZeyghNWpa8EP/+tf4bXxUTyunm/fA65YsxLqZBZzG/KU22IE+2ONcm76Y3KlAsoIo1tVGT0+DPVll10GdUc7XWPpmKQzOL6KiKxagWNopYl+in3HD0Jdc/C8mhhHv0uUxc+LiAyswev6eVvWQH3Z9iuhNiHdv5Dn2U/Yfc1zsf35ejQ76yrwFpI1M72cBb9TURRFURRFURRlgeiDhqIoiqIoiqIoLUcfNBRFURRFURRFaTmL8mik0xnxpz0OYQM12R5lCnAtIpIhPbGfRD1Yk8IZEqSJNyFqIifHitY6fEM6ehc/k2vDdXoONkG1jnMm9/WgvrnG4RIiEoT4Gdbys38iQ/M2++TAcGN0mgHN5Tw+TtrFGq4jkUA9nufTMyXrSUXEp2wOj3TXzWhWWy6DVHTfzt0z3p9khjJW2lG/2NPbY33eJf1hOoVaTJ9PB8sqw/Ok243A/hor5yBinTjlUdDyPO4rrn1etefwPUnSThrapiMj6HV67gj6LdassrW1bXnKuPGx/wl5UzhjwnM558T2L/CpZdgjFJjYfy8lbjQpp+JXfIfyc+i9juWssvsMa649B8eO4oljUD9x/3fx8zU6DiKy/wnU7ratwnnl12+7BOprXnoj1I6D/Sl0OM/Ebnv2P9hwTgHlOVjvj/sL54Gwl4T0xA3s58cHMfOhvw/baeoz6Hc6sOdRqNuyUx6xem15cjRcczodxLpOcFZN3OetHI151kfX3KiKGvkDhw5Yn5kcoOyq+iNQl0fxWhZRW15A2v62gQGoR3rsjIH7aPw5mtgItdPxIqxrY1B7AfYNY/mtRIyVDUbn9zxt2Qp/xexlLIdf46EH7hb/1L2Fi9eNLRehN6fZsM+RiDyIQRPbtESGiqCB/S2inLO2VausdeTIt3FiGMfQXTufgfrAIOZ95LN4n8peruPH0DcnIlJrYC5GlMJzYPfxPVCvXI9j8ro1HVBnsjgGi4hIFe95yvVDuJ0Oek16e3CZ1QZeK+IyW0yI+xHSPZGBf8dlzcSjv2goiqIoiqIoitJy9EFDURRFURRFUZSWow8aiqIoiqIoiqK0nEV5NLLZzIz/oFhD/WsQsPbYXjT7NlhiWKmg5o/fnyZPhzRtjVlIWjknge/pb8d5nPeTbrenA/V9nZ04z/NE1daWV6qoM2ySn8JPou6atzokrVycdq5axbZJ0XzT7GeJeA5l8mhEkb0fnovHLAhI0zdL9RuZhc+h3Cr++atfk+T0fp5/wRZ47bLLt0Odi9E45rLYnwLSBhvKm+D8iZD0ym6MD2m+6f8NeRVSCTyOYzTH9+SxItSFlRusZU6M4me+8Z1vQT1exRPtpFkBdaYDteorV1xsrcOjkzUgLW1E8++zfjikeeqj0NZ3mpAzbbC9zaw+F9bxfFgqjh19VjK5KZ3+wBqct5zPCfYUTP1t7u92uA3CANu5PUVZCaG9jvLwEahPTmAuwUhxBOqMj2PeJS+6FteRYm+SPXY4i7uUiEsnCp83cf4nvmAY8vSxD+3Iweegvv+e/4T6xS++zlrFob2Y6TAyiPPfP1iZOh6sLV8yHMea1//0S86cdexn5q3JN8m2kMhuh85u9FhsbcNr0/cexWtuNoP9j7OFmhXU2Kce/2drnRdnHsNlCo6ThwXXUSng9SJDuQde0/aBcNtEVtYGeePYM7OA48OfWe7cDGbs5Ih40/lRa1ejd2ZsHH0v+ZichspJPJZN8g+2FfA49XegDy7hUOZYTK7Z4cGj+Acal326xzvp4D3jnr27oN5/ALe5eBzzQkRE0nT/lchydhVu58Aa9JD2jJ+Eulq1czSqZfSrHHrmHqi9ANc5OY5t296B97KNGno+REQybdi+fppySmb5dp2Eff9zJvQXDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nL0QUNRFEVRFEVRlJajDxqKoiiKoiiKorScRTn4giCYMaKxkalJYSATE3aQlNeGAWmOy6ZCND5lMmhMaVbQtNPTheYWERHPRwNMggJIGhNosqlOoqk0J2jOHRlE42SxYpvfXApVS6TRZMMm0ZDM4lUK9EvGhLLlKewwN21IPcUE7VcygW1XKeM6xsfRWCRihwImkrgfQeN028aaNc8yjz33rPje1LNxrgsD+i41GEJWmkBjmoiIBHgcPAfbJJulUDoPTw8+boEV4CTiUHAUeaDl+HgR6uETuJ0V6o/5DJ4zfa4dpvf5//f3UN93731Qh/l1UHdsQhPsZVk0plVHyUwnIs32LtzOk3heNJo4OUQUoYk5bJDJuWGPD2wsZWP0bGNkicaCpWL/nmcklZk631euQkOpS2F7caZdyz7q4Xc9QQ3bbdfjD+M6mrjffTQuiIgcGEbztzg4VkTjE1D/179+DepcAt9/4WUYxBXEeIwdcnezTzak8MWQjP6+i+3gOPZ3YC79zaMxKKjjfj332A+hfubR70NdGrf7+eAhDMEqksH1VGhpGNiG+KXAcZyZ0D0rsG8BZmP+m+HjxseB+idPmFGNmf5i1zHswz9HE3W8yOmA+sgJHPMOHUcj9skqHtdGULTW2emg8f/qDE6Q0ZvvhXqfj2Oe62IfNycwqFFEJApG8Q/WrvOEK3NPmBJn9Oa/8TJmvx4tg1E8aULxpk/u0QN74TXubtl2e2xa2YV/a2tDs3dvLx6nTAbvx2o0CcjwSTRRi4g8+SQG6mXyOJ4dnsDXy2S8Lh/Da9vQKJq/fc+eaKY0istwT+CxSfo4Xvyg+BTUuRQe5452ex2ZFJ57+WNoUn/60X+CulLGa+wqCm49OWpPyFJP4PG56tqXQD0wcHoyJZ6gaC70Fw1FURRFURRFUVqOPmgoiqIoiqIoitJy9EFDURRFURRFUZSWs7iUpVmwR6BeQc1/ENhBKo0masbYimBJGkkf2k56vibpmUVE0rRQU0NN87FDh6Hu6MDQmVqpCPU46ZlLLLoXkbZ+CrpzcUcaFErjp9D7kKS6NoF6dxGRtjYKHCKNeiKB2+BR26VSFOgX2fo8DtFKUtBgOCusJXTsz59tao4Rz5lq/yY9Ird3dUDd1Yb9U0Qk6XFADWm+HdRRliZQK1yjgL+4OCwvwmU2HTwu/3H3d6G++3uoI08kUSN5GQUTJlP3W+t84oknoe5bjZ6M9LproDbtuMwTR/dAff/d6AsQEfEv2QT15EgR6hyFILUVsK098l/EBfZJOPd7ZuuV65XlCeybODkiyfSUbjis4djgZ/qgjpNoOw4FG7p4jo2eQG353icehLqQxP7UTsGdIiInT6DGOCBfUFcFN6yzB3vycw/9AOp9Ox+HOt9he+O2X/4iqBMZ1BhHpP3nk6dJAaL1qu3hqU7iNaZURH324YMYtvfMQ+jJiEiLPXz0gLWOSVpHOoceKdefajtjxa4uDb7vz3gz5guAc7jNJcbXwe+hiwCH5nrk0XB92zP26CG8Rj6TuBDqF//Gb0C9ZhCPY+oR1K/LwQNQBg3bnxXQsY0m8Ty6NIUhlutyeO/wqOC9Ralm+wu8El4PmiG2RWTsPvvjYnlqljnAryPlzoT/dmaxjVYOYBBsLsY/1tODXj/LZ0K1n6T7ObqeNur2feZzz+H1TMhreXQMQzjPW4Xn+GUr0b+zuhdf3z1oh+mNDJJ/hzbLJ5/u8Aj24YjuRRyxAyNdweujSx5n36PQQAoRzDy7n95v3yNxCOXhwxhe2N5++jofBAu/B9RfNBRFURRFURRFaTn6oKEoiqIoiqIoSsvRBw1FURRFURRFUVrOojwaYRSKE01puHx6RPESpN30bO1wk/wNGfpMmvTHHvkOTBN1bpNlOwsi8ljDjPq6ShXFc2OHB6H2SUuepnmcs2l7vzp6cO7n4ydxnmYrc6KJ2jqWzfoJO0ejUinTe3A/M2nURJcmUePns2cjyX4FkUYD27deR81pKnlajxvE6H/PNsl8SvxpjXDPQDe8lvCwEX3X7tqG5uF3eM5yweNSrmAb1suoq6yVbK3w0WGad99HneSDP0KPxaG9u6E+Qd6DZ55DfXzCsftG/yr0ZAz0Y328hvvZ3o31s889BPW4a2tQN3Si/+CRhx6BerRWxG2inJOLNm+E+tJLULctImLCOtXY/2bnmCQWoQ9tJWOjRyUx7anav+8JeO38i14KtROTeZLgLAjqg4cPHIC6WCxCvXYA9cNStrNcLNkzeV2qZezXnZRHVB9HfftTD/4I6mTSPvfH9mA/TZOHL5OntqBcjeII6vSrk7ZP7QhlXJQmqZ8mKasjwPPTdXB8C1y7D+VT2G+rIecaVKf/vzw5Gpu2XS2+PzW2sb69STlBYYxJKKKcn7lyGkQ42UqEzTWu5XsTKUX4nv/3dfJ8dW6A8kUXY4bFS7rw9Q1jqH+vTJIeXkQmT+B1vHQCs2TMOPqWklns84XaKqi/da+1CqkdxmOeqGG+QmB4bGZ/xdxtvRDc2dfdZfBrXL5ts6Smx781K9GTEZFHYHLCvo5kszguhHQecf906UbTaeJ4V6nYvpgD+zEfp70b8yM8H/vs5dvQn3NxH/aNbz+M1/QC+WVFRAo9eF/ZLOGxIduupAyPTbTAuLCiCNfREBy/6hHe62bbOqDecvEaqLeeh+ediMjxw5iNUiY/Sy5/er+a9qXnjOgvGoqiKIqiKIqitBx90FAURVEURVEUpeXog4aiKIqiKIqiKC1nUR6NoFETMVMfMR7Px41lZOkVbY18lTwAve2o38sXsD56FL0PYcLWsYXkPQgyqFtLZlCPN7oTNfJugMKz/ixqi/Nd9tzQIbViMovrbNJ+SsjaShTw5VjPLCKTpEf2E7ifzQD17WETa4fm/PYc+xmz2cB9D0gjn5g9Z/oyTCPf1dE2kxfS24s6StMgfX/c9vl4oFyezJ+6LHuEktTnkxn7OH3vEGrVH372OagPHsC5rBPUxlGA2vTj46jL7Mx0WOs8OVaE2hxCvXJqFXqIki76QJ4lH4i/GvXKIiJVB3WpnasxV+Our/4//EATt/vZZ1H7uWY9fl5EpL8P19GsY593Z/mM3HB5cgwataKYaEqLPHj0GXhty/mXQl0u2VkfAfkfWINcOoFjXJ36dZ00zWOUuyEiMk6ZRqyL9n3KW6D5/0PycPTmUHvtRXZ+0dhezHKpV1GDHNB4xPLyTA7H1a4CjqEiItHJfbhM0mdvueAiqNNJ9BWVaJsOjtha/2IT287JoQ46XZg6Xo67PHkGn/hffy756XyCiHwuTbquNJq2B6XRYN8TvicMSTPPHo6IPSv2Nka0jNFRbGeeq/8E5aEYytPJJvH9w5O2N/PwMdLRU8ZD1IWDO58jK/L4+e1b7fHpYeo/9REc2706nduUyxQavl9Z3kyM50N3Z17S0z7VtnY8R6t13N8G5XCJiKTI41qn/shmhib3R6olJo/JEbw3Mim8jlfpPueybeg1+ZmLNkP92X/7KtQTjp0jlM1jPkglxLHfIe9vKOgFC9lTGuvRwLbxDeVokDeqQDkmm+mau27NSmsVY0XMmwkMemHbs6fbNm58ORP6i4aiKIqiKIqiKC1HHzQURVEURVEURWk5+qChKIqiKIqiKErLWVyORr12WuvvoeYxkbDn02ZY7xmRFrNMuQQN0vUGLAj1bB9I4KDusdxEDWBPJ+rV0ynULxvSrxsyI3gJW1dZr6Pes9mgZZCO0Hdpu0mw3KCsDxGRNHlPfPJYcFZHwL6QiHJO2J8gIj5lkAhtZ616er9Yy7sUZFPpGY9Gk9qIJdM8b7UIbv/Um7ANQjJ2FEvoEXBq+PkVXagBFxHpWzEA9RP//DWoUw7qVleuwLmtRw+gDt2hkJV8BvNSREQM9be+DtTO5rqxjz/4/W9DPVnE+eAHc/Z59Y/f/DLU1191BdSbBnC/D+xHT8ahQZzb/Olnd1rrWLHiGqhd2ndvlsfGjzn3l4JGtSRm2pR1aP/T8Nq+3bhPKQ/HGhGRPT/6LtSFDPYHl3SvAWVBPPDEo1D35m29cJW0u2EJx6eePtyukMbIcqkIdXcHriNsxOiHKYNHqrgfWTpB/TSOZwPrUSftBXaOxtE0Xi8m6lhHpPcu5LHfr+5BvXFXocNaxxe/+S2o+7bgOd6xasrjFyxCn9xKxo4+KY3c1PltaPxKJtEz1t1NmSsi4hVwjHdoPEoksM086zzDdXKWh4hIELCuvovegcscPobehvEieoRKdF8Q1m3vU3se+5NLvo5HH8dx9fHH0FPk0TU6mbH9BZkIx94oi2NePUW+wSpmeXhV8qLEXIPnc549n+yNVpJKpiSVTE1vCx5njzwpbkzWTEQe2Ijana/B7EMSa512e3BGWD3E8c+4eF+ZTlAgRDQBZZK9wIF9lHzKjfMcHItch/YzonwQOvJxMWXsTwk584a8d9UIz5PJBnmMInuMdXzcjpMT+JntW063bd226p0R/UVDURRFURRFUZSWow8aiqIoiqIoiqK0HH3QUBRFURRFURSl5SzKo+EEzRktWUD6WF5SMmUvOpGhLAefdJCkyXZIy9nRgVrPkRP2POhZmn89ScvMFVDH2kXLLBdRLxpQHkBpAnWWIiId/ah5LpJnI0XehwRpayPS/JXLtkdj1Uo722A2J0ZGoE76qFNMJbBdajXUwYqIOIbmeqbtchPLo4s/RblUEt+f2oaRYdzfgObGLlHuiIjIDx97DGovhf2vHqCuslLCNrrsgq24zpiwjq4u0syTl2aygrrJ3jzqLJOk9UxTjktnAeffFhGp0ZzwDerDxeojUI8ePoCbSHN8jxYxy0FEZGiE9mNiHdQp8ghFND9/iXwkR4+jflnE9v24nPUyq71jXAJLgmuMuNPa2OLoMXjtGPlQXnr5hdbnt15/LdR7n8EMk9JR9Mv4LrZJUbBd21P2OTmwCY/N4Z3ol6nXcBmJLuxziRRq0Vn72wjsdTpJHF/qgjpnj/x4aQ/Hp3ySNM5iC4B7OzADaWQSx+ITRcxCcELK7qjjNg102x6adp7nv4LLyEy/3mSf3RLx5MMPzOQYZNt4LMDj1BOzf1nOeCKvSY7yTDKUFWQlQcSMgezr8Ok6n0rRmJbH92c87H9Hqnid71vdYa0zmcB9Zf9AwuB+Pke5PscH8Vw2o7YPRMgPALlSIuIm0QMkWTw+QYDXk4C8UbGcY1EbruuIO20gaDbZb4HvZd+BiO0HY58u+3gd+i6cX68HtlcqpOu4U6UNo1vTuofHabKB/bVGY4CXsQ9Krg3HjYjuG10KW0tQ5oWhcT6dsO+fcynyISVwncUy+imSPvmVS3QvW7LzaBIurqOdcueuu+70eVauNEX+l7WIWPQXDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nL0QUNRFEVRFEVRlJazKI9GMpGc0chHNC86z+8cRbZ2LpG056aeDc+/nU6hnpT17j299jzhLmmYk2nUf4YR6vd82o/uzg6ox8qkdx9DHZyISL69DbeBtOb5PGoAQ/IT8FTQuQRqP0VEykX0HKRSqM+TABeS8rCtJ8eLUDdqtj60SdkbocH29mZ5TQzPb70E1JoN8c3U8RynjIvJKh6XI0dsD8DjT+Hc6YksaoErNVyGQzrfLevXQ90M7T6ez3BOBvbRRx/D7IUjBvtnQOdRVw7nte/ttHMTxgLUE08MH4J6qLQf6vokajV9Omeynn2eJpvYNvueRm/B6AhqnAPS55bquM5KzCTcPIe6T/6q2X1uueaTD5ueuNPesbpDnjPS1QaRrfNOUn5EWxY/M0CenQ29OAamSTOfKKy11rH9UpzfP6rhedyo0fGnSdsN6ahPkOdnKM4bl0Vtf4r8XkLZB+kmtsP4KHqunKY9zqZoXGzQOFpp0LzwPp47Y2PofymRx0ZEJOngMt0MLqOte2obmvXlydHIpHMzPhGSt4vQmFwr2V6/jI9jXiaJdZ103hny+mVzdE2OOQ85+8f16DwOcLuCJucU4DIdg69nUvb1cdWqlVBPjqN/J5/E84wtpK6HY71j7O9gm6S759qpFvED1DTWPZETk5rBnhe6OXDg30s/Bk6WSjPejEqV+hvdUzRr3EFFEl4R/+BhO9c5Z4OOPfsia+wVFpGggcell+47j03gdn/xy7uhfqDjMNROEseA/nXkxRGRnr6NUO9/7lmox0awPwaTnBGF2+jk7Vy6gfPOg/qCLRdAfd93vg/1yPFBqA8cOAJ1adL26TYcvC77dB6MTZw+TyrsfZkD/UVDURRFURRFUZSWow8aiqIoiqIoiqK0HH3QUBRFURRFURSl5eiDhqIoiqIoiqIoLWdRZvBEKif+tOGRMuikVkMjXjOwjZBVMo+4LhpgOPClWkFzUboNTdcDq1ZY66hX0eBSqWEoSZ4CmdLohZPJkxjqxJkzTmg32fhJNCY3Kmj6mgjw9UwCjT4+tUOlRKZGERmvFaHuJFNwyqXwljE0bJ4cxTCrbM42Fadou2pNNvuYM/x7aWg6Rsy0Oa5Ehq8T47h/O59FM5aIyOAIBtF19/dBzWbwk/T+vYcOQJ2jwBwRkRU0McAvv/YmqI8MYahbSKZSL0GmMAp3DGNM1EGF+peDy8yQqT0sY1u5ZFLscsjwKSLZcTwvxhu4HVWaAKFCky5UyWCcSNpmN8ZQOBMYwJcpyMpIUsz0sFkp40ZUa3gchk8ctD7v8/iTR2PrZVvRVDh0FCcPGHkCjf5rNqPxW0Rk3QBOQOBdgst86L4HoJ4cp5DALJofwyoe+zEyGYqInKBLSTtNipCm8KhcFo9/sYzrqMYEbpbJS1tuYJ8KKriMQDDELZ3Gti6fxHNRRCSk61Z7Wz/UmfzU+egllicycv/+/ZKaNreGDrZ5hiYIqcQEch0/hgb4fB6PdYImNGjQeNNBoYkhX7RFJEnhi7zMIMBl0tAhuWwHvR8Nv889Z4/tIY1hExW8hj62C8/FEydxbA9q2Hei0D6+HBbHE1JweCG/376ZiBvE+G9UO3O8tgREUTSzX4bCHrmvSGhvH3m7JaJrk0v75JJZnOdfCULbUG/oTf3tWXod1/HAAwdwmy5F03X/eTgGTBbssM4rdlwM9coNuF+DB3E8LI/ivUaJjPOlmEjaow5OcHP8AI7blTzWkYvLHKfJMryUPSGQ5+G425bG7X541uWovogJMfQXDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nL0QUNRFEVRFEVRlJazKI+Gm87PaMhLFQxYcpOo10pnYhYdoJ4uSdrNkAL5qhQAMzqG2nInRiebTeMyxifQqzDQh2ErW87DoJ+nHsb3VyYpIKZp6w6bAWphUx5q+CbJcxFQW3EgUblih1W5FKrlRFgnSNvf5FBA0vx5rq0z5DzFRsD76pzh30vDeKUs3rRm89Ax1InvH8QwmhMl8tqIyJHjqE/2KbBv05bNuIwTGFTm0XH1Yh7T0wk8tldctgXq6156OW7TIezTQ6OokRwfK0Kdqtl9IyS/SsDhUySl7GrD/W6Q1j0Vo3tNUxjY6AS2zSSd7+MUpMRhfDnShovYQV8hibfNrJpfWyo2XbBZUtOhe2NFPBbVcdR9P/UEamZFRH40jO2WqKIn4APveRfUv9iG7dTRfQ/U5RN2MGVuGAOozstj/9hLvrQjh1C/7q1ZD3WTxoF6TJhZaQL7bbWMx5KDLF0PN2KSfG2jRbvtyjSmFcu4XzSsyt6DOCas6UZ/QSJhj4F16vs+jZMmCOD/S81Xv/qf4k6fJz6N+b5PAauuPUZbYxgFhfnk08tQQKTDhz5mDPR9HAs8Higj9jJg/8pkUFMfkuZ+dNwe210KFnSS6JWrRxTOSsNojfyg4izk+sbjpJmjivnLAsIO+Tpr4F5h6T0aHW0FyZwytkZ4/qXofq4WE9iXpoBI9vhwbTi01UUfiMMXNxEJI1yvR16Fbauxzx8cov41egDqsVG6dm3AoDwRka5O7LNbutE7V9tM20S+o8FR3Iav/qc9rq/dgD4QN0NBq6s3QJ310Cv17M5Hod60yVqFXLkZz5uQQpwPHpjV57yF9z/9RUNRFEVRFEVRlJajDxqKoiiKoiiKorQcfdBQFEVRFEVRFKXlLMqjEbmehNOa1VQWtZvpHGrpMgn7GWZskOb1pnmYhWTXPkloWUten7S1mhkPNc0BaczKZdyG9jzN954hrecEaqiDmLmDXR//lqN5m0eGUL/cnkcdXLWM62g27HUkUrhdk2VcZjaH6wxI2xmRuNbEHPkkzcse8DzszdPLWA6NvAmNmGldapIyLBJZ3P/JwJ4jukY+gbFR7D9uhPvf34F5BGna54xnZ1ocKe6FOszjOnt78Tg8/BDlBwT4eipFute6PTe+oRMnCvDYj06iltbPFaDuG8C8gdFR+7waqaKmtNrA/XJd3IYq+bEypM1ty8Z4NGh+8zr5ocJZWu5azBztS0FXf6ekM1N9r68f200ibPcJynYRERmZQO3t5FF8z6Eh9HCs7EEP2St23AD14ccfttYxOvg41G5vB9QDPZihs2fvTqjp0FljSalqZyQ55A9okH58vEq5K8fRg+HR+DRZxzwkERE/i+e8Q76PMfKJlEu4nfUqeuVW9uatdVQoOyhF1wNvej+9cHm+ozNOWsx0W/Hlk/X85Zp9nELyRwR0sBu0/5wNkSQPh+PZPpeE5dHA90ScPyHs0cB7C4+yZxocxiAi4tF4047LyGZxzPNcPO8iGk/cmOujbangjAvb2/bjwp4NR2a1ZYzH42xzfGRMUtP3Iu05ykFz+J7D/nxEbRRSjkbAQRm0ix73lbSd+cT5MoeOoSGn7OO1rJDGvuH4+P5kGndkvGn7xx56+hmozTB6SIcPHsbXszh+NNvwHCnV7b4UDp6kZeB2BdQf0lnqxA6eu7uGMJNJRKRaws8YCi8qVk8vI2gs/B5Qf9FQFEVRFEVRFKXl6IOGoiiKoiiKoigtRx80FEVRFEVRFEVpOYvyaHgJR/zp7IpqCbVbHunEUzQ/t4hILo26bJd03kJzKLs0z3khi96GBAc/iEiK5uzu6eiCOkuavkoN9evlCupafZ5n3J4aWrJZ1L519+J87cVRzOYwQjkaHmrtGjE5Boa0jJ5DWQmCGxZxrgbNqR65tr7OcNaGT58JTn8mWgaPhiOhOKc0mk30YCRojv0sC81FpCONPoFyDf0OJ8YwG+aUFv8UlSppwGu2jnzXSfRouDWaM97D/tYMUDc+cRK3yYlQ214gr46ICMnjZZLyBXmchPQAAOqkSURBVOrUFoUc6pfXrcE5v+u9fdY6nnjyWVxnAc/FgZXoVyg+h1kOOfJkdLXh50VEZL4+5Xjx/15KnGBm3UawDxo6JzN5W6TcvwrbNuPieNSkMbBEPg/H4Hl95c/9srWO3U/3Q11vYh9KPoi5GZk89geeu744XoQ6iGIyJJx5MgKo9puU80PjU6YHt0lE5LKrLoG6tws9VN+96wGojx3G8/noKG5DqWZ7rJo0Fue68fhEHv5/qfEybTOZSpxXkUzh+Ja2ch5EGjTmNevYBhkyfhjB/pYqdEDtxIQJuR5dl8nXwR6NiPx0KbrOux6NeU37uPkJ7C+ZzhX0DvIC0Klp2z7icjTmypUSEStfhpcxz+cX/J7l4z+/fc+M56azgNfHti70fuVz+LqISEcb+qLS5MfhPLAU5aOw8SO0sr5EHMHPFKvouRhOYV/wK3hOdAueR4kmXqO3b7XPq+o4jqk7D+I93/EDeK9g2nEdKbqX7Vxlt12Z8tpq5B+u0+ulBq4zaKf8kJp9vd21D5eZq+Pxqs/KsIli7rHOhP6ioSiKoiiKoihKy9EHDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nIW59EIajPegDTNex5MoN6r1rRzDIImzXXt0Zy9pE9kBVkyidq7traCWJBOurMD9Z5JWmdlEnVsEc0bzjpYP2Hrk8MI22JiHPXHrot6u94+1LP7pEMcHH3UWkeCcgg8mkO+4VCWB2khc5Sz0WiiblFEpDKJf0vR/OW1SuvnCV8MftqZ8Y2kO3DbJkiPKJ59nPw2OvbUw46HRagdB/vwYIj5Ej2R3Ya7J1DPObQPcxPcOvbZjVtXQd18Ej0eQ8dwmzjTQESkK5+m9+C+d3SiZ2jtAOqXs6Svf+k1V1rryJNX6Qf3ox4+m1qNNflh+nu6oR6gc0BExONzbw55srdM0mU3CsSdFug3QtSKJ1I4DlTKduZJQPvopfHc/9q//jPUl21Ev8XwMPbzvq0vtdaR6cTPPHTff0F96ATOA58toH+mTnO457Jz9y8Rke5+PL4uZSd41H+S9PqqVdgnV1/EGnuRngEcy1M0X36xiB6q/xz+PtRNMlZM1u1O1LcO19u3Fj1+TnJqTHCi5clx8TOdMxr5BHkfMikc411ja7DrnC3SoPwI8hmkMjhe5TvwPI8c+xaCZfNOknIx6CNBDcdMnzwa7O8xYnvjIgevB56P64wiHMutXCkaV82CMiq4/8w3KC1k0Dq3PBnM8PHj4k57uMIqjhtHjmJ2hLj299geeXra2/FY53K4zI72Dny9DV9nb5eISMrHY7dxAJdx3c/gtefY4eNQj53AvhIE2GFf1GbfB42ksQ+Pbqb9WoljZpXy2CaFvFMxXuDJCP/IuRk+/W5gyMvUpAwTJ2V7nLN95B8ex7o5cbrmTJS50F80FEVRFEVRFEVpOfqgoSiKoiiKoihKy9EHDUVRFEVRFEVRWs6iPBqmWhYzrVdzSURmKPuhXLXnuvbIY5FJo44yJP3yRJ0yLRK4uVFka8SiEPV1o5Ooq+8gz4ZLc8Z30VzQDdKwNnBxIiJSqqGObcKjucmzqJ0tThShDklr52XsrASXPBn1GJ30bHya694EpL3jee9FJE/z6Y+drNE7ZrfV0muUuwa6xZ/OVhlNYBs/MLIH6sCehl/CDXhs3RDb5HCAGu9kAvuG0yxCfXLv09Y6dh9F/fu+Paj/7PSxTXdc+TKoV/ahBvofv/wNqAPXnsCfz4IrX4R5AxvWroO6n/0RVdSXbu7HfAIRkeyVl0F9/333Qb1vD3pLWFc90Ivr7OnssNbhUZ9KsP521hzqvrM8WuZypSSBmRpjKjX06HC0R6mM45eIiBgcw0LyfH3zW9+BemjnSqiHSWMfPU3tLraHol5HTXuyC0+OxjHM6qiUUNtfNbi8XvItiIj8wq++AmonjcfH9Widk7jMFT14blY9e6CtNlHHnM3guLpl6yao773nQajrkziGuml7kDjvovOh7uvCfa02p8aIelyg0hKQyXWLN21y8JPU4Zo4fh0+uMv6/MQEzu8fhnxdwPcnyGcUkWexZ2CztQ7Xw+Mi5NdKk7ek7lDOBvsrqP+5guOViIghb4lL3pGQrncu3fpY40nM8GKEs6vmy9F4PsyTozGrXI4hsL+zY8ZncdEFG+G14gSOMzUOKxGR5/Zg3sT+/c9BzT7cJN0LZTuwbxXy6D8UEVmzEv+WF7xXaBzGMfQ3f/lFUN/5+R9APXgM7yk7Uva5P+ziOkYNbneFL2V0fxY08BzJNXA8FBHJU/9q0LnrhuhfyXAfD3BMDev29Yl90s0Qj2nZnB4PFuZjmt62Bb9TURRFURRFURRlgeiDhqIoiqIoiqIoLUcfNBRFURRFURRFaTn6oKEoiqIoiqIoSstZlBlcgvpMIB4bNXNZNK+EMUalukFTTaWKZpREEs16HN7CIVBsXBERySQpHK8Nzd/pDL4+OopGSI+SwLJZNPWsjgkJfPYAGpzSFHDVrKOhrtrA/Q55N2JCaCIys1HujRWeElFYE78/zuzG7ZtK4/EozzKihqEdBnW22bJpsySnQ2Z2FQ/Ba5Me7n+y3T5OfR1o7HTruA+VKvZPT9gMjubfA3uPWOuoU1hjewODzDIRtqlXRXP46k40Yq/o7oP66DCay0VEettwvy5ej4by7jYy0HkU9JMjU+wknhMiIr1p7Bs3XH0F1N+4H423k3Vsy0KGzMAVO+yw7lIfJvNlNCsAKgqWx4zrJ7yZSSkMBVhGdEo4jv09TiKNf8tQu2y5+DyoN3ZhoKM7MQx10bWDUfu7sQ9luzdA3axgnxsbRBPx5GgR6oDC6cbH7SDCSQpd82g+iwbNouGEeB4cp2CoIMkTUdhm+zEy24cU1JUtYL8fH8ZtDGPypsZOFKE2TWx/L/Sm/7884aVXX3GhJKevcSZAA+qP7rsH6qBun2NJCk4MqYtanmiqa+PY/xp5Mn6LSMfKC6A2aQyP9en65gV4Ta6T6TUQ3GaHzeYikifTcH8Xjv+NAM8TM4b3BaaEdRTZ40sYUZ/k63bEF1UOGqRXY820c5vSlycm8jTt7QXxp+8T2ikI1vFxAKw37HuEiy/YAvX3x3DsqQf4GVPDPu5N4CBQLZ+01nEhhZz20L3AkSEK5Kvhsb7xepzg4GtffxbqYyPWKuV4iQznEzium0narzz2cbptFd+1+59xcD9SEd5nGpcmLkpi56HMSvFrdmAfDwirPZzEpeqd3vnQRLJb8PidCf1FQ1EURVEURVGUlqMPGoqiKIqiKIqitBx90FAURVEURVEUpeUsyqMRzNLP5dpQg9ZsokYtigkWq1OYXoZEt6z7D5uog62HqFtry6KHQ0SknTwUKdoO0yQtMGkCUykUy6UpbGiyaQcRNiPUCjtJXEcbBfY1KriMygRqntsKtgY1kUYNqpdC/V2D2rZUwqCVVX0r8PVK0VpHo4YaVA7PWW6isapE0227IYfawRz1pXSAx01EJEVyzlSA3T+VQZ+RT30nqKPOPMjaGseIjr1LQWTpJD7bOxSmxku8YGAA6hKFPYqIvOTSbVBfuAY/41IwT4bOesfDtWYS9vcPTgLPi+uvfTHUj5NPafIA+lc6CqjTrpZsnb9DQXOuj33czAoLa9ZsDf9SEDQaM36nPAXG+RRmVovsUM2wieON6+JnOqm/TFaxz23avhaX12aHzvGYN1bBtk5kUVvdvhJ9QIMHsE+uobFjaPyYtc6hQTy5elN4vCM6tu3t2HYemcj8LH5eRCQk31kqictIpLGPrt6EXqWjeynALrL7+ZFDQ1BX6+g3SOSm1uGY5QmM/JXX3jjjXawVMXyvfALPuYmyHWxXo3BOifBa5NA46lF4Xo78FtdchJ4iEZFrfuY63I4mfsaldTSr2D/HySsXklGkVLbHjtUr0Kd20fkYvNggX+R3/guP/b0/wGU2G/Z1PqRrbMSid8PnNq7DUCBxENjjQ0T3QNEcPo8wikSwC5x11qxZJcnE1PUiIo9JTw/p+at2IFxbAa81He3YN4bHilDnyae7bSuej37Gvs5HVTRRrFqFfePBh/dDvfdZ3M6LL8J7yB4K9ty3y74vinrR47NjzcVQP3rgUagPjhyA+rztF0HdnqZQXREZ3o/+zIkGjtNeD45/OR/b1qnjdq9KY5CviIhLl9Ubtl0L9VD+dEhxo9GU3T88YC0jDv1FQ1EURVEURVGUlqMPGoqiKIqiKIqitBx90FAURVEURVEUpeUsLkfD80WmdcgRzdkb0LzTxlKby8z8y6dI+qgZazRR89ho0LzAIWoaEzHz1PudHVCH5MnwfMqKSKHGz6H5i3N5fL140p43eM161NO5lFOQoywOIa1mbRjnO8+3oYZaRCRF2+36uO/pFPkJUtiWyRRuQzqytY31Gu4be2Zma9AdnmB9CeishJIKpvbbaVIb07ZmHXvG8aRgGyXoOTtfQI1jknwJzQruczqJenoRkWSe5oh3SJ9M1iVDun7HQT3oQwk6Z6xAFJH+rg6o+zpQL+o1cZkeeTJCPo9i9Od+Aj+zeT3u+8Z1qPfcfwS17hvWroG6LW/7q5wQtbKsT643TvfpxjLlaBg5rZPOkveKczNKpaL1eUfw3PdpAvVsG7ZLVweep1nKyCiKnaPRJG+blyCfWR31592r0aORKKCGeft20rs/EeNTa+A6e7oxP8Z4eLyySdzPJoUJRYm46wdr3vEzadJSb966EeqnHzgMdT7G48fHJ6RMh46OqbHZr9ptsBR4ifTM8exdgd6Zn7/xFVCXqrYH4MDQINR18hy6dM615XAs2XYeejJ+/TU3WetYuxXf0xBcRpaOU9hE38hwEa+HDcqnqFZtj4ZHGSpr1+Kxr5BPafj4VqjHx9HsUK3aHjCPxuoopD5Ang32OLL/pdm0j09Af4si7I+zr7vNZlP2Hfl3axlnkxUDfZKa3q+jR9ETVK/juZLL2F5ToUye7k48B4sT6DuIaFwIyDuzeRN61kRETlAu0PFh3E6H8iWOn8R7h210r9XdjsdxPFhvrbPh4Licr+Ay/DKOf/VRPK7lHI53bsbu4xOj6IMcH0Nf3Hk5vAYnKYdqcDdmj0lo+6jXteH1qPjc/VAPdJw+B+r1hV+D9RcNRVEURVEURVFajj5oKIqiKIqiKIrScvRBQ1EURVEURVGUlrMoj0bDiJySDLoe6ixTKdSYNeq2djhNGRUZmgN58iTq0hzSp6dd1NZFNXue5iBADZ9HmQDNBmovO9KoIxyj+bbLlJFR6LPnd0/Q/MQ8fX69gZpT46J2rrsP53luxrQdaxubpBFOpLFtHAfXkSDNc30MNYJTGzZ3dwAdbIwH4myzJpmSTHJqP9g/4lHfSLj2viTYI0S1BHicPI/m7c+xn8LexojmTnfIryO0nZ5foJdxmyKX/DwNu2+E5F0qtJPHJ6SMghRlL9DXDWGMv4riP8SjP3S0437ksriOvk7cJi+m7Urk8+J52k1wui2iIKb/LgGBIzM5GiEdS5+0vcmU3Y51yjZIZ3EM7OpDb0OaZOAe+YYM5XKIiGRIA+/RgMTa8NXrUet/YD3qjdv7cRsv2m5nJ2RzuM5CG+ryK+T/atA4HNI2Oi5+XkQkJL12tYx6btb+Z/I4Lq/cgPu1dt0qax2DRzAjZOQErWPFlKa8HtjtvhT4maQkslN9IEHXtg2b8Li889dtjfzxk+hFGBrHnJbJEtbrBrBvXLQBNfH9vejvEREJE6i7d2g8cem8qNP4ZOi8Yr9PGNl948QJzBio17F/BeR1qFOGxSR5OCYnsR1ERCLyhTUpn4gv/AnLo4H7xdcwERGhMY8vMslZ1/FmTA7H2WbVqgHJTGeL8XVn1y7MqSlGRevznJdTyGEbJcl7OjGJ1+Rndu2DOsP+VxHp6cB+36Qxsr8H+2eDzuV8HvN3tl6IY1epad937h/F7I6xMaxfcimu46XtOPZ859uPQD00Yfe/m16DWRsdaVxGjnzTbZ14Td7Xga8fPmiHsPzqL1K2Rg3vecbrp/ejUl34PaD+oqEoiqIoiqIoSsvRBw1FURRFURRFUVqOPmgoiqIoiqIoitJyFuXRqEehhKc8Gj7qdn0hHXCMz8Ah/SFrDJNp1B+znj0pWJ/S68+GNYCGdKylcdTbJULUbkYGt+nQsRNQd65Ena+ISKOG+rt6GXWFjo+vs9aYtd1OZD//BdRWjQDbl3Wt9TpuA889zpkmU+sgX0cSj3FkyrP+vfQa+YTnzfgsXGFPCon+Y/ImOLOC5+pPUn9K0zz7rLn1EvbpE9F7eDsSPq4jRX3eo+Oy4ThqxNeMjFnr9JOoTW/vwj7arFGWDB9Xmm+7FtgGChPNPWd2FJHOtYBepnSa1hnZ+mSXs2KEM0lOtzdrrpcKL5MULzN1jCshnoMpH7c3325ryT3KKWiG2K4OjVeVSRyvchHl4dCQObVQ1Ke7dK72daFfJshiu190OWr9PerSGzsxE0VE5NAIehvGx7CfJijHp0lZHkGI25xNxXg0aHwqZMgLQPuZy2HjrNqEeUdrt9j+ggnyfUxMYPtXqlP67EYtxke3BKSSyZkcAzo9JJlBTfbqDaS3FpHN2y7Fz9AldP9e1MAXKNOpM08dzo/xc2XwPQ3yYCRopfU6vj+fw3OknbJlghhvQ5H6m6G+kCBfyCR5HA8NDkNdGrfH2Qb5OAx5+oyZe4zk3Je4a6iZZ1ybneXBGRtLQTadmfHWbtm8GV7rbMdspYMHDlifr1XRo7Yhj33UuDhOPPMsZvqMjuMxeOixp611XHzhBqj7e3C7si5eLweH8Nj/v88/gdu4Hq/zv/Fr26x17jyAJ+OePTiObL8Aj/2Fl+I2vOn69VA3AjvnrNCJ58n37sVcjJEiekc2rcL3//IrLoO6THk1IiJuGse1555CH8d4ZdZ+hOrRUBRFURRFURRlGdEHDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nIW5dFIZ9LiT+vSJyo0Hzz7KWgefRERh7IXWGedokyLenPuefVTOdRuioiwarFRQS0mz10dOTQ3Nnkf2godUJvAbrI6zSddJ817ZwbbooPapjSObTnepMnzRaTRwL81yLORonnsuzoxm6NWQw0060Xj1tFsYmvO9nXExCCcdfKdnZI9pfV28Bk5SX6JdNrufz7luLjkp/B9Xgb5kMg/4cT5XOg8sHIz6DMu526Q1yRPeQR9PagzFxGp0XGqRzRfO2uDyRcQUn8NYvJUIjpvHPKe8HmXo3Mzm8VzO67/sWY5ouwYJ/Jmvdf6+JLgJqb+ExGpk04/qFC7xuRoeGnKYqGcFI+yg/xsB9Q1mss/mbBNGg55RbyQM2Zwu5wENuZ521DjLKyJj/HwVAyOYU4D96u9DY//yQrqiZsN3AY3Rofv0Tib8Lif4jI42yPXjud7Tz/lzYjIqjU4btZpLE6d2vXlGABlykeWnB63EjS21Bzc1mqMZaBJfsIsjRUJn8ZNB/tXKoXeq0TG7n8RHxcy+Tgu9nEeC3yfPRy4zc3YDBMeu7G/BTTG8bjL/sS4A8xjd0ReSmPoderDVkRGXCdyeJn4odk+JR4fl4JkIi2pxFQf8Slnat1aHPPXrMPMFRGROuVANai+9DL0Daxf8zjUDz76DNRHj6OHVkRk9370iyUomyPtUy7GBJ4ouw/hNgxNYh9/8X7bnzVJkRSmies8OozjXe2HOJaVJvFYTlbxfk1EZH3iUqh/5ueuwnVS/9yzayfUt3/sq1BnMvb988atW6AeH6PzP3E606a6CJ+a/qKhKIqiKIqiKErL0QcNRVEURVEURVFajj5oKIqiKIqiKIrScvRBQ1EURVEURVGUlrMoM3jC92cMs2xDIr+hVGIMzVky3+YKGDBUbaBBhoPrQgoNq9RttxsHQ4VNWiaZbVMU6pQI2IBOBuDQbrIKmWKStA2GTFvpNJrdymQa8zzb5OV5ZPCto9mSjds5MulVSmhGMjGhgFFEoYtN2i739DLjzLxnm5Vr10tuOizIUA/kILw4AqpDMlPyLtXoDy4dR9eyQIuYOhmYOVgwSX3a2ip8f6mIxrVqxQ7ZOT6CTrRBCvXLpbDPunXsCxFN0mA8NFKKiKQc3FdDhs4ChdNxuCEHaMWZLfk8YWafu7FGyqXABCLGnd6euQNI640YQzOdxzwBQUjt3CRzaIMmyKgG3H9EwpCD6/B4NmkZPMlBqoBjhxUMFtj9fvXGFVCnM3j8yX8umRxOtJCg5MEqhaOJ2KGlvotmRpfazvVwpStWdkOdzdpG5o2bMIxweGQE6tSpQMVgeb6jM+KLmb5se2S69pIUfBcT5lghI79DfaWrB9vIz9J5zcfVtduhTkbYgK65xsHjGNBpH9H7mxSiy5MdxP3NHkkoNDBB++FQBzX2fvH5ztcLE/H1hO4d6HphJM7UPjcwBi7DEOj4vjjTY5Yv2GYubVAUcxT8BE8ugMeWTfwvve6lUF94EYbO7T540FrHj+6/D+oTw3gNzaTxuOQLOBat2YCG6COHjkP9O+//prXOCk2kw/eNboT3iDwpUZ1OAte3jdo7bsCJGFYMoGG8VJqAes9uNIM/eP8BqC+/3A4ebFtBIaZ0HiT80/fskW/f458J/UVDURRFURRFUZSWow8aiqIoiqIoiqK0HH3QUBRFURRFURSl5SzKo+EZR3wzpcPzKbDL1h/a+jyHglNC1jg6FLpDwXZGUOdWq9t6dZnE4CjhAD7S5U5WWFtHIUg1fD0R02SGNMwR71iCw4FIo0reiJ5eDI0SEcnVUfNXP4K6wYgztWgdjQbq8q1gJhHJkm56tidDRKQ4drotliMvzSQ8MdOBZk3y3oTUho26HSZTpr+FdKyrNWyjKoXmJCgU0HNjAvsoJcuQ9tLy73AgE2mmh4fwOJ8cOWmtc5h00/sPH4W6PUvrDLFP87nqJGx9aD5J52YG63KVAonquI5SCc/LMEYfH9EYwn6qYFZgG58zS0UYNCWc1rkbPs/pJIwNNHJJi0seDCtIjLS8JeqT7LeY2jAsCzXU9uazeHxzFKbIgWk1Dq1L2n6oZsjnI26XS4crU6AwPQf7aK1qj7O8ry6HxCZx/HJorF67YRVuY0woYKaAbTGQRu+JeNN91Fsej5DjpMSdDtELaGzxKUwvk8ZaZMpiBO+hsEa+boQ+tmlA133PscdAslpKk80MFFLJY0WSg1X5XiPGnMBeJx7T+Lxqb++A2mOvFPuSZPEZjfZmkj/Gsb/n5evBfPVSEwRGmtP9jvePr49uTIvxsXMTOJYkfDz22TS+P5fHkM3uPvteqa+rE+pHH3gY6maE16pMDrfhwMHDUD/7NF6DGzHHrU7Bz7Um+kK8iPbTuoMiH5J9Wsk/feVf8A90/8L+vyx5UdasWQl1Pm9f5xu0nSnyzlWC0+dqLVCPhqIoiqIoiqIoy4g+aCiKoiiKoiiK0nL0QUNRFEVRFEVRlJazKI9G1vElccpHQRIzhzMJaJ5qEXu+/gbrQSPS+JEG3pBwzU3aOm9LR09zjUekgS8WUfPsJnAdmTRqiWPkeZLktiDtNs/5Xyctt0P690zG3q+TY+NQZzOor0uR5j0M0b/i+yT6c2wNqli5EKSZP8O/l4pKvSHOtNaWtes18lewJ0DE1syHlCXCHo1aDfsGe3FMbCtQ3kkw91zpdt4E665RM7lx/XprGZs2roO6px+1mCmPRdO4nyH1R+PZ/p2wiW2xa89eqMtlzD1Yswb18EePHoG6cRJ1ryIidYc0n6TnTcyat71aX7g+tJU4UTCT7+OzkJa298QY5puIiKXtL7RhToFH3/2cHCtCPVnG48DadBE7I2CCzgXux032sbWjDrpGc8QHke0LCWieeENje5Kyg1Kk008laayPbJGy6+Fn2M/E28WePj5fGzF5IJy94dP1JJDptnCXRytfq9fFnz6+uTQeZ/ZA+lnMqRIRyVN2g+ti3ZzAY825Bok0eTRcu//5ZMiplXG8cSl/wffoXiFi/yf2BfbniYjUaGwPcrhf6QyuM7Q8RVgbxz6+/DfD11CHruvzXiTnv4rO5dFYDr+Gm0yKN33N4nwdvtIlvZhz2JnPp2KFqkDpsV8nYbfB9osvhnpNL2bjHDmB165SGf0UYYQexy0X4r1VOou+JRGRJvWFCnl7Q7qXSHicbYT7UaFtErF7S0cnelE2b8b8j/7eHqi7OnBcz8fsRzqH57NP/mIzy+TFHta50F80FEVRFEVRFEVpOfqgoSiKoiiKoihKy1mQdOrUT3TwkyX9juPQT8lG7J83I3quiein7iCiKekilk7RT/bG/gm/QT8nevQTPk+h2aC5+Fz6PP9C7nj2sxn/lOvQT4oNkmNF9HMhb0O9bu8Xr4N/anObuA7+aTho8s+69s+2Acl8DP2sPns6yFP/Xoqfb0+tY/bPkTw1JU+RGCetqVK7snSq1qDpkxskxTgL0il+lZuzTlN6NgP7vKrTdlfoJ83Qkk7R64b2y43Zr4DbF9dp9U+aerNG76/ESPcaDk0Hy9Pbzjp3T61/qeQDp9ZTr50+HizvCUiK06jFTD1L0qlGEt/jUds3aRnNOkk84rpXSMePJEYNkrs4NE1iPYHHul4lyaFvj4EBya8MS1HoOCUMyWcC3KZ61T5/ue9bU5BSf+EpTg3tZ7MeI52iaxBfAIJpOVa9tjz9b7ZEMQpQctSk/peKkf9ElnQKP1Mt0VSzJKtsNOeXTpWqeJzKFZKgNrGvlEooE3FIMt2IeAy0Oz1LN9Mp3K5mgMuoVlFaHHLfipn6mM8jq//FTIm7aKg/RdGZ61P/XsprcHXWNOZ8PXR4am7P7hs/rnSKp82uR/Y44YS4XpZA1+la1GjMfY1lmTZPAS0iEtD1jK/73J9c4ddpmnvOKxBbOhXQPV6Dzqs6SV75HilmGBdD57MfzCGdmm7XhfQ/xyzgXUeOHJE1a9bM9zblp5DDhw/L6tWrz+o6tP8pZ2Ip+p+I9kElHu1/ynKj12BlOVlI/1vQg0YURTI4OCiFQiH2m3Dlpw9jjExOTsrKlSutMKRWo/1PYZay/4loH1QQ7X/KcqPXYGU5WUz/W9CDhqIoiqIoiqIoymJQM7iiKIqiKIqiKC1HHzQURVEURVEURWk5+qChKIqiKIqiKErL0QeNWVx//fXy3ve+d7k3Q/kJRfuXspxo/1PORebrl+vXr5dPfvKTi17uhz/8Ybn00kuf93Ypyo/DgQMHxHEceeyxx5Z7U5adBeVoKIqiKIqiLDUPPvig5HK55d4M5SeE66+/Xi699NLn9fCqPD/0F40lpEHBaory46D9SVlOtP8pS0Fvb69ks9kzvt5sxgRjKsrzxBgTG8qnPH9+ah80yuWyvPnNb5Z8Pi8DAwPyiU98Al6v1+vygQ98QFatWiW5XE6uuuoq+e53vwvv+cEPfiAvfelLJZPJyJo1a+Q973mPlMvlmdfXr18vH/3oR+XNb36ztLW1yW//9m8vxa4p5zBRFMmtt94qXV1dsmLFCvnwhz8889qhQ4fkta99reTzeWlra5PXv/71cvz48ZnXT0kBPvOZz8iGDRsknU6LiMiXv/xl2bZtm2QyGenu7paXv/zl0A8/85nPyNatWyWdTssFF1wgf/3Xf71k+6ucW2j/U85FgiCQd7/73dLe3i49PT1y++23zyQOs3TKcRz5m7/5G3nNa14juVxO/uiP/khERP7kT/5E+vv7pVAoyM0332wlQivKW9/6Vrnnnnvkf/7P/ymO44jjOHLnnXeK4zjyjW98Qy6//HJJpVLygx/8QN761rfK6173Ovj8e9/7Xrn++utn6iiK5M/+7M9k8+bNkkqlZO3atTP9kQnDUH7zN39TLrjgAjl06NBZ3MtzEPNTyjvf+U6zdu1a8+1vf9s88cQT5tWvfrUpFArmlltuMcYY87a3vc285CUvMd/73vfMnj17zMc//nGTSqXMrl27jDHG7Nmzx+RyOfOXf/mXZteuXebee+81l112mXnrW986s45169aZtrY28+d//udmz549Zs+ePcuxq8o5wo4dO0xbW5v58Ic/bHbt2mX+7u/+zjiOY+666y4ThqG59NJLzXXXXWceeughc//995vLL7/c7NixY+bzf/iHf2hyuZy56aabzCOPPGIef/xxMzg4aHzfN3/xF39h9u/fb5544gnzV3/1V2ZyctIYY8znPvc5MzAwYL7yla+Yffv2ma985Sumq6vL3HnnncvUCspyof1PORfZsWOHyefz5pZbbjHPPvus+dznPmey2az59Kc/bYyZuo7+5V/+5cz7RcT09fWZv/3bvzV79+41Bw8eNF/60pdMKpUyn/nMZ8yzzz5rPvjBD5pCoWC2b9++PDulnJMUi0VzzTXXmN/6rd8yQ0NDZmhoyHz72982ImIuueQSc9ddd5k9e/aYkydPmre85S3mta99LXz+lltugTHx1ltvNZ2dnebOO+80e/bsMd///vfNHXfcYYwxZv/+/UZEzKOPPmpqtZr5xV/8RXPZZZeZ4eHhJdzjc4OfygeNyclJk0wmzT/+4z/O/O3kyZMmk8mYW265xRw8eNB4nmeOHj0Kn7vhhhvM//gf/8MYY8zNN99sfvu3fxte//73v29c1zXVatUYMzVAvu51rzvLe6O8UNixY4e57rrr4G9XXnmlue2228xdd91lPM8zhw4dmnnt6aefNiJifvSjHxljpm70EokEDFQPP/ywERFz4MCB2HVu2rTJ/MM//AP87aMf/ai55pprWrVbygsE7X/KuciOHTvM1q1bTRRFM3+77bbbzNatW40x8Q8a733ve2EZ11xzjXnXu94Ff7vqqqv0QUOx2LFjx8wXysYY853vfMeIiPna174G75vvQWNiYsKkUqmZBwvm1IPG97//fXPDDTeY6667zhSLxVbuyguGn0rp1N69e6XRaMhVV10187euri45//zzRUTkySeflDAM5bzzzpN8Pj/z3z333CN79+4VEZHHH39c7rzzTnj9xhtvlCiKZP/+/TPLveKKK5Z255RzmksuuQTqgYEBGR4elp07d8qaNWtkzZo1M69deOGF0tHRITt37pz527p166S3t3em3r59u9xwww2ybds2+ZVf+RW54447ZGxsTESm5IF79+6Vm2++Gfrpxz72sZl+rPx0of1PORe5+uqrxXGcmfqaa66R3bt3SxiGse/n6+rOnTvhen5qGYqyUBZ7r7Zz506p1+tyww03zPm+N77xjVIul+Wuu+6S9vb2H2cTX7DorFMxlEol8TxPHn74YfE8D17L5/Mz73n7298u73nPe6zPr127dubfOluGMptEIgG14zgSRdGCP8/9yfM8+da3viX33Xef3HXXXfKpT31KPvjBD8oDDzwwY6C84447rIsw92vlpwPtf8pPAnpdVVoN9ynXdWd8QqeYPfFAJpNZ0HJf9apXyec+9zn54Q9/KD/7sz/742/oC5Cfyl80Nm3aJIlEQh544IGZv42NjcmuXbtEROSyyy6TMAxleHhYNm/eDP+tWLFCRERe9KIXyTPPPGO9vnnzZkkmk8uyX8oLl61bt8rhw4fl8OHDM3975plnpFgsyoUXXjjnZx3HkWuvvVY+8pGPyKOPPirJZFK++tWvSn9/v6xcuVL27dtn9dENGzac7V1SXkBo/1OWk9nXYhGR+++/X7Zs2bLgB9KtW7fGLkNRmGQyecZfymbT29srQ0ND8LfZmRhbtmyRTCYjd99995zLeec73yl/8id/Iq95zWvknnvueV7b/ELnp/IXjXw+LzfffLP89//+36W7u1v6+vrkgx/8oLju1HPXeeedJ29605vkzW9+s3ziE5+Qyy67TEZGRuTuu++WSy65RH7+539ebrvtNrn66qvl3e9+t7ztbW+TXC4nzzzzjHzrW9+S//2///cy76HyQuPlL3+5bNu2Td70pjfJJz/5SQmCQN71rnfJjh075vxJ94EHHpC7775bXvGKV0hfX5888MADMjIyIlu3bhURkY985CPynve8R9rb2+Wmm26Ser0uDz30kIyNjcn73ve+pdo95RxH+5+ynBw6dEje9773ydvf/nZ55JFH5FOf+pQ1E+Rc3HLLLfLWt75VrrjiCrn22mvl85//vDz99NOycePGs7jVyguR9evXywMPPCAHDhyQfD5/xl90f/Znf1Y+/vGPy9///d/LNddcI5/73Ofkqaeekssuu0xERNLptNx2221y6623SjKZlGuvvVZGRkbk6aeflptvvhmW9bu/+7sShqG8+tWvlm984xty3XXXnfX9PJf4qXzQEBH5+Mc/LqVSSX7hF35BCoWCvP/975fx8fGZ1z/72c/Kxz72MXn/+98vR48elZ6eHrn66qvl1a9+tYhMaZ3vuece+eAHPygvfelLxRgjmzZtkje84Q3LtUvKCxjHceRf/uVf5Hd/93flZS97mbiuKzfddJN86lOfmvNzbW1t8r3vfU8++clPysTEhKxbt04+8YlPyCtf+UoREXnb294m2WxWPv7xj8t//+//XXK5nGzbtk0TohVA+5+ynLz5zW+WarUqL37xi8XzPLnlllsWNR38G97wBtm7d6/ceuutUqvV5Jd+6Zfkne98p/znf/7nWdxq5YXIBz7wAXnLW94iF154oVSrVfnsZz8b+74bb7xRbr/99pk+9Zu/+Zvy5je/WZ588smZ99x+++3i+778wR/8gQwODsrAwIC84x3viF3ee9/7XomiSF71qlfJN7/5TXnJS15yVvbvXMQxLEJTFEVRFEVRFEX5Mfmp9GgoiqIoiqIoinJ20QcNRVEURVEURVFajj5oKIqiKIqiKIrScvRBQ1EURVEURVGUlqMPGoqiKIqiKIqitBx90FAURVEURVEUpeXog4aiKIqiKIqiKC1nQYF9URTJ4OCgFAoFcRznbG+T8gLAGCOTk5OycuXKmUT1s4X2P4VZyv4non1QQbT/KcuNXoOV5WQx/W9BDxqDg4OyZs2almyc8pPF4cOHZfXq1Wd1Hdr/lDOxFP1PRPugEo/2P2W50WuwspwspP8t6EGjUCiIiMiv/tUjkszkp/8awXsc41BtL8e4Ef0Fay9K4qv05Bw4IS4v5sHaWoXMHXw+fyy6M2c5tZDFhqsv/tsHQ1tqxNpRfN3aJI/qmB0xvA5sb8c9/ZlmtSRffvcVM33jbHJqHY8/8eQZ1+c42KZxT9j8N/5mxqHXjTf3cY37Zof/4vF5MecSbeL6+HxEEfaNCA+jGD7OVPPnY7fLWob1jnlKex1RhG9qBLjhwazXS6VJecmVL1qS/idyug/+xq+/XpLJhIiIrFvTA+9JZ7H/jE1Qw4vI40/sgfro0HGoG/Um1J6fmHO7uN+LiER0wLmf8ljizfNtlGONHXHnBXdUrvEz9rmH7w7DwFpDENI1h17nfhsEDXw9xHaJ6+fcr3k7T30miiLZv3//kve/r/7DFySXzcZum+vhcYodn/gz84xIHi1zId+cc7vO16bz1rT8RMw2eB7eysy3TCbiMTDmmh7xmEVvmW8dDrdDZK9jMXcSpXJZdrzm55f0Gtzd3zXTB/p7u+A9ibAC9eaVndZyLjp/AOrLL70I6mf2HYP6C1//L6h7enHMXd/Xba0jncT7yJDGjV5aRsLHvhNVcQzecv6FUI817LFp39Ag1F4Cx+01A/1Q93XgNqxbdz7UB46esNbx3ft+BDWfVxs3rIO6ODoK9VNPPQV1dxcePxGRVQNtUF926YtxO9deOfPvUrkkP3PD5Qvqfwt60Dh1AiUzeUlmTy106R80XH3QmFUv74PGzN+W4GfUU+soFApSKLTFvocvgPqgMas+Bx40+HVj4h408G9zPWicYql+xp8ZA5MJSU1fyNLpFLwnk8H+U23YDxoJugD5Pp6XYUBjojf3eRv3oMFNMu+DhrUOXiO9HjPeOdY4+eM9aMRhjUe8Dbyfhm6853n/1Gd+vJvis8Wp9eSyWcnlcrHr5uP4k/ugYfdX32/tg0b4AnjQWOh6W8GpdbiuO9MHuG94dF+TSNjHKZ3C8S+XpTE0jfeAnkfLpPEymbRvYVP0N37QSKdwHdaDBh3mbCYNdc2zHzRStEwvifuZoWVksxmo8/kcvY4PbVPrwLbiPpvJ4DJraVwnX3uS9EAmYl/TstNfapzeTvuhYiH9T83giqIoiqIoiqK0nAX9onEKzzXiudNPURF/S0G/NsQ8w0SCT1T85Ujo4jJc+io2Z8kv7Of/gJ6AQ/o2LjD0zbfBp1PHWibXMU9v1s83cz/h8Tc8C4O/AZ7v2/b5Ph/3IV6F9ZXNzD9jftw46wRBKEEQTG8Kf3s597f0cVjfzvE3cfwtLH3eLOBJ3tCn5tsq6/UFtPN8+27M3G013zeQC1lnK163fomhMSYKndh/Lykmmvk1xswjUTpGP6eLiOzeuw8X5/AvHPiNkpfA2kTcn2K+lXfnbvtmE6UBDslOWErF3dzE/OI137drfGzDgL4VpF+44k4tj3/2oPeEIe5XkyQO/Hr8LxpY8y9Op/bj+Y3hPz5BEMyMgc/HADzfLxr8LbU9VmCf52+Lp96Df5vv12Zrm+h165vzBfxSM1897/Uirv+5dLs077g736949kpY3mcpGWaNiSH/VL0EZPzTv2j49AujT+NIuWb3jckK/q1ao3s+Wuaa3g6oB3qw7oy5hY2qeN4PFkegTmSxP61YtwrqiRRuw646SpBGi1VrnVW6v1rZkYe6vR3rVAK3m3+F8WJObY/6S9DA8SykvhNwX7IUKzZdXR1Q961EyVcj4cb+ez70Fw1FURRFURRFUVqOPmgoiqIoiqIoitJy9EFDURRFURRFUZSWsyiPhu97M5pVa9IYngbQsWccSJBWPBWgsz7horauu4B1V2Ic6uPHUHsnIrL7GH4m3YNTfqUKffgBFzXScfrjVsOaeWvGlhh4xgvj8FSPi9Osx0uM+Y80i8ks7Wzkzz1TzdlmvhlXFvQZl/fPmjBzzs/HWzTmnjFlPm237QOZ//O21nzumdIWq1+OY35fyNx13PGad7Yr5wz/XkKCZiDudHuxn4vHjkTCHl5zOZy1o9LAZSSTOFOI5+LMINwf6jQdrohISALfVAqX6Xqo3WW9MHs4XDov/KR97OqNOi6D5OMOXQ8c2kbH8ufYM7u49pSCtA5sS9/DsT1gX0hMJ+J+ybMZne7GS6+PF5nS7J86lxbrCRCJm3mL67nHBrt95p+5az6Pxnxtbn0+bnyiPy125ivu43H+F8/qC3N73Vgzb9jPspCxfA7753IE56UTjnje1HrTafRhOeRhGanZbfjQPvQ37B9+GGoT1qAen8Q2a0vhOewl8P0iIg0ai9rz7VDnPRxTT+w/jNtA+5FwcRpYd8Rep1fBv+VzuN0FGotyOZzNqVbFdmmjWahERHI8+1Xd3g5gkbO9iYiUaT9qNHOiyZ3+TGMRF2H9RUNRFEVRFEVRlJajDxqKoiiKoiiKorQcfdBQFEVRFEVRFKXlLMqj4fqeuKd0ijSPvW9QF+cGJevzXhPnI+50sE7X0YNx/gqc3zjto3a4su+AtY7kyBjUtcnjuF2dtMy+zfj5XAfUkUNp5THyUGeRGRcstDYLyOFwDT8T0jrn02suYA5lW5t/Zt1q5C2q67SE2amk8+lTY5PBWRdu6XLZX0Ha4AWlzc7tj1h0ZsU8Guq4ZVg+D9qv+fTKcdu02JyS55MzYM2Xz56NWUntfmJ5cgxcicSdPveCZgNeCxqUohxzljXJJxAE2PYNB19Pefh62MTXGzVbpxv5lABL2vJ0ErM52MtQmkS9cCaLY2CKtNkiInWa071Ww7bhVFo+O32X8xtsD0QQzK395wRzP4Hb7TSwreL6qJ0jYb1lWXHEgZTm2XAbx/rWOIrEJ48Q6de9CD9QKaOvcmwMr7ciIhMT+Lfi2Emoq1VcBh+HU8nnp2hra4M6n8NaRKRQQB1+Xx/O/5/JoCa+Sf2VM3vY7zO9pfQefp3Hdq5J7x53MzEPs5OyOe9mKQjDaKYZ0tkeeK2zfxPUDds+Jm4Kj+1Tex+HevTYIaibFfLlDk5A3VOwvQwdnehlWNuJGRZs9XIb+IeAzon6JB7oWs3esUYSj8VIA8fQ7Em8Dy2090JdreA5Yee52RkjLt1Hcm1nLlkLtKhVyWtXxTGze2DWtaOJ750L/UVDURRFURRFUZSWow8aiqIoiqIoiqK0HH3QUBRFURRFURSl5eiDhqIoiqIoiqIoLWdRjt6MX5eUP2UOyUVleC2Y3A91ummbxNIRGnlWrcAglHoZjY4dGdw8h8xPyYxtShxYSQFXFHg1Xj4I9eT+Iahr+ZVQZ1ach+ssoIlHRMTQ8xp7WDlMzyFTWERBhY5l/Lb/Zhx+j5m7fF7ZPmx+Pm0ujPylN4OL44pMbwPb713e1phHaJcNfhx6SB/y2GwVt1AipIPPwWTJJPZHDkfjkCc+jrEhXGzm5jdY5m9eBZvJYwzn85jv2eT+fEIA2dyaTKCZNZxlrkz6y/MdSblckmZj2nRruuG1JpnD41qMQyLtjEgaCzxst55ONLWWy7ZpujgxCXV9HMfqKInLCMnwa8hUXSnhfkWBbYas19EYaE16QP06JFM8nSYSBPZ+cQAir5MJeTt5XLVSZ+332CFsUezfl4NDh9A4e/ToUajjAr1SNBFAmgzzhgye1Qpes8cnTkA9Uce+JiLSqGK7N6s8xmHb8ZjIwZc1Os7lqn3cc3k0iA/QRDIXXXQR1JdddjnU7R0dUHNAroht7uYASK55DPQ55DbGDD5fv5q9DG8ZQnM9LzVjQs9TmwuNbfUa9h0RkSpNFBAZ7BteikI2m3jOl6jN0mm7Ddo60Pwd+DjelbxOfL1jNdQZmoxA8mTcjtC4PbUQ3K5mE/t0o4HjyngZx9RUEvezSmZyEZFqDf/G9yPW/AVWPU+wr4gk0zg+uC4upHji9P1yuWRP+HQm9BcNRVEURVEURVFajj5oKIqiKIqiKIrScvRBQ1EURVEURVGUlrMoof2WxJBkklOazGyIWs1SEoNVXJR6iYiIaaL+LkU6fyeN2rh8ATWAzQA1askUBrOIiDgu6jdT6TTVuM520rEWK0egLu8fhjpsRz2fiEi2ZyPUiQIG2QQOBWSRXtk4qDN0YgwV/JfQ5TAg/gQFrD0fj4Zh38Pp51IOv1sKgiiSYEbDyv4R8hnEaV35PVajsVeBjgst04vxqbgUkjVRQg3z4OAg1D092FcKhQLUPq0jzusQcX+aZ78Yq2vEHVr2qywyLIq9JwsKBSQ97uyAvKCBGtelolatzmj/mw0aazKoy02n7EEwQf3DJ5+QS5rltSv7oP71X/tlqEdHMAhKROQf/t/noC6TRr7aQO20MbidIV0WooiOXWBr5DnwbF69OvktIuqFzabtLyA7k9UHWd/Oniw+lyw/lMyvuzdyyqOx/El+fL6wZ+XgAfRwiIjUKhiSmzR4HU962CYNCogs1ah9PLuPlyfxQA0P4jq4TVevQl9kby9q4g35JeoxfSMsY1uU9qEv6clnnoL6/gd/BPUv//KvQL15Mwb5ith+OoYDErnPsz/Lce0+xH2SlzG7ni+09mwQBKdtTCdp7KkeH4GaxzIRkRRtcoE8aStWYl8oldBPUSV/zooVdv8b2IDX0E4KxxtJoLe3HnRAnaThLZ3E/YoK9rUnUSWPRQ7fM0k+uBPjuJI03adW6nbblevYVr6L99P2VX+eIGjHvn+ZqOIyT1BY4UDu9DIXE8qrv2goiqIoiqIoitJy9EFDURRFURRFUZSWow8aiqIoiqIoiqK0nEV5NPq9Mcl5U9qzIE3zHzs4V7ET2Tq2qoP6L2seYAf1iR5pcA3NG80636llzq3dNqRTS6dRr9dLkr98A/dzknI4RESKJfRxJLvXQJ3rXQd1ItMOdeCSDj9mfmOH5vBOCOcUWJ/A1xcg57Q1d2f2aISJZXhG9TyR6T7AelnW85P0c+rjZNtgmwHbOlzKceD53icn7XnCdz77LNTf//73od6zZw/UAwMDULM2+LzzMMdlw4YN1jo7O1HHytr1BvkZ5vVLxPlADPc3s6iaifWa0AHg7X7woQdn/l2pxMxlvgTUajUJg6nztTSJ/hvHQ51tM24oitiHwscC+/XqVagvXrsaszuynt0Or3jZZVAPHkNd/u4DqDkePIF69pCyhzyPa3swYd19k97C3iUeuz0aT5yYiIAGeRCSSZpzn30h9PmQsjkWYjPyPParTK/DmrR+afB9f8ZrMt9Y0Wzag2CtijkGlRJez04OY31w3z6o9+3D3Kl6EGPGTGF/aWvDPspt2k65B0L3AbU6fr4ZxejXS+jbSPi4DT7Ve/bvhvpL//hFqH/xdf/NWscF518AdUTX5Pl9a5xnZJ9HiUTC+hssYda4uVifXCsoFDIzXpQwxDYvTeJxMnU7Z6GrgD5ch25Bq2j1lXqN+zC+P9lm979UgNvVP4HbUTkf71XvpT7v0nlzFeWFrB6y98s7ibVZgWPVpIP3fFnK1WjQPWDFtiFJQBk/Cev4c0AWXWusJdqDbCnCc3HvcfRFZ9tP71e5NneO0Wz0Fw1FURRFURRFUVqOPmgoiqIoiqIoitJy9EFDURRFURRFUZSWsyiPRjadkey0p2EyQD1YkvTVzcCeozwiTVhEWjhDy2BNGesX4zSK9tzBc/sOItK9RaRrY11+e4yuskDbPT66H+ri6FGoc/3r8fMrN+EWplETKCJiOBYiml/vCZ+f89VT72GtPpaOe3odUWLp5/B+bs9uyeWmNJ6rVq2C11J0nFy7+1nzmHssUTT4oaFBPG7PPbsT6l27dlnrKBZRZNrehsdy+/btULPXZB9pop955hmos1nUl4qIrF27FuqNGzHXhduqo6MDaj6v4vpSFGIHnM/nwTX7L7heyDIymdN+qrjPLwXF0oT40z6h792LmSi+y8YE9H+JiBgHNcqpLM75XiPtbhjiGBmVUAx86JkHhUmUDkPd52E7Jvqx43e3dUA9NI7bXWzQWBPjn3AC7MeOj33Ko8yjJvWfyCUtNmnqRURcun5Y+UO0TisnJ0JNcVwUhkvH0GVj1/Rmm3Dpxz+RqXPz1Pnp0LWMPY3JmLGiQHpz07Me6hUr0HfW04OeMj+B/W14GP0+IiI18tK0t2Ofb5L3iv07fLFLUGZTW9bOzypVUUteo3wsPtZeArX9B45ifta//ce/WevI5PC8WLMavZg8biaoP/q0nwv5lneucZRzYZaCzVsvnLlejJ/AfJThY8egXr0SM6JERPJ57JOHh/F6WS6hX6w8gXW+gMet1rDH2OMl7AvVBHpoj5TxOBz18P1eN65jxMX+2nYA7wtERNpGaZ39HVCbLvTWeQXsG5k0eiNqNdukEXGP4esN3bCxh2g+D66IyCT5Cg8N43jQ3X66rlbw2MyF/qKhKIqiKIqiKErL0QcNRVEURVEURVFajj5oKIqiKIqiKIrSchYl8uvq7pV8YUpLFp1EPd4EZQqEQYyGmjRiCdLVG3fuedB9b27N49QqaL2km3QtCwfrwufWko/uQf+FiIhPfpVcZxfUedLFTgyjDn+0iBrCXB/mboiI5Abwb04Gda9Cmmfer4h19zESY2tqeMujcbq9o5gMk7PNpz71KfGn9aFv/NVfhdeuvfZaqNlDICIS0sFPUJvsJs/FN/79X6B2qEHWrbOP09YLL4Q6RzktlreBPs/9rVxGHeTIiK2JZl/Hs5Tlkc+j/rO7G/WiPB//hg3o8RAR6epGva1H5x7rroNFejji/uaQBvWiiy6a+fckZVgsFfVGVYJw6vuZQgq1vOkk1n7S1g8XS3h8q+R9CSLc5wOUu3Lg2RVQjxyyxyO3SvkuZH/YsKoP6ldd+zNQ//Pd6At6fBf2OT9pz11fq6FGOUXDcL69A+pisQi1QzktfsrW4YcB9aEQ6yb5RDinqUR+FxPaORPznY8z15N5PHFnC8fMGqet/Bsq43xQQl4a+qoxk8PryqYtl0Cdz3dA/dhjD1jrODaEGvaAvJisP+cxjsll8TyK82amyGc2Rtr+iHIKmnTeNUNsl6efw3NARORLX8asjf/vTW+Bes0q9Gy45CGyPIKWxn5+bxssfxlyNCaCSBLO1DZNTGIb93V3QM3eQBERj47TiTJ50AT9Pat70X8Y0cAyNGlf5yf78P5rTzuOV8Ua3nd2ta3EBaTQR7KvirkZpQtWW+vsS1DeWoDHuq+Mfd6bxP410ImfjyL72DYbuO9OinLmaADgjCaG/cgiIj0d2Har1uK9QUfb6TyQpGdf386E/qKhKIqiKIqiKErL0QcNRVEURVEURVFajj5oKIqiKIqiKIrSchYltHecSJxpfZ4hTW2dcjNCygcQEfFIkpjKoBYurFag5qcgy0MQgzvPm3iZEeva5llniuYIFxFJkXZuvI77kV6BWsX2Ff1QBzXUVJePYl6DiEhpEn0cXSvXQ53tGqCNYg8Haz3tdrKajv8wSxMa+kv/jHrs6KB403OHf+Wf/xleS+Qwj2DrBeiVEBFJ0dT8hvYv34FehosuPB/qtZsw76SN9IwiIgHpyFklmaJ1+h5u1MQJ9D655CvJ5VGzKiKSTJL+mPpoeQL9DKUyzl1+97f+A+rOHnv+8/UbtkC9YgXqWrvpM/kctiWLwQMrGEaEjUMu+RUgN8Asj0b+ZS+5SlLTHSlD5wDPEd+IyRK65348t8eKqFH2abfqE3isHrzne1AXUvZ5mEmgJ6xO+REDa3CsSLfhSlesx3PpyT1DUHuOrc31+fhGNP7XUM+dCClLgT5vYjx+ruX7wfe4tE7j4HnBkuQ4jXsyiRpyvox505kk4TmQo8Ea6/mybabAffbYpGFdA/D1vl70CPX303VHRGpVPNbjlC0UBNjnOccnfrtP45JXU0TEVLE/RRScERlcZ8jnJo8nnt03nnrqKai/9rWvQv3//dqboe6i60OjgetM+LbHdL48rNmvz/fes0E9aEg4fQ1LUUZUVEcvxL6jmLMhIlKjEypBGT99OTxnu8hfMZ7CNjvRHLXWMbQffW3tBbwWteeKUHsrsH9m1+N1P9mJ19xSh93nn5QxqFfUcWzqSOC14cBTe6EeL+MY3c++ERHxyLfhO3z7zv6euX2Rcb2nOob3mYdreF6taL9s5t/NQHM0FEVRFEVRFEVZRvRBQ1EURVEURVGUlqMPGoqiKIqiKIqitBx90FAURVEURVEUpeUsygwemVAiM2VoajQ5YATNL8kEOW/FDhThwD63jqEmNmQWjTFDcaga12yYme/9vAY3xsTqsim0Dc1HdTK/sWmPw4b8mP2qldGkU3wOQ7QmuzEsqGvteVC3tZNxOcYIGXKoGr0++yOR7cc761y0doUkp9tqdAJNYF/4u7+H+tqrdliff82rXwl10sPu30lBZKu7sc1yGQwRmyzb/bVSpSCoJNbtCTy2mQwaa0+eQANdOkOGQdc2EOYLuIzJBm6XaVCQGS0z7VBIZRMnMxAROXr0MNTPUbhhgtqurxcnPNhARvre1XbokUPfe/g0gYE3q38GzQXMDHEWSPmupKfP9zQdyyjE0DoOLRQRoS4nHp2HSTrruimsrHLyJNS5DjRui4hU6dzkrSiVcTtHizgZRY36S7mK73eq9thRp8DGJo3lE+NouOSwVdfFjW7ETLrBkzcYh8P0sOQ8NI8MvjyhiYh9HWMDZTgd8hcXCLokzDKDLybc7cxwm/DrNHkFBd918HVFRIZpkhdDplQ24ecoJJBfHx/H/nnkuG0yLlWxv7k+bmeC6nyeDOjUeYIYqywbyB95+BGoM0nc7ze+HkNl29vRPM2meBE7CJUN37Pbxo0J/DvbDB8bEm/axJ6iwaydjmPKvlSJSwZ4n+6dUrRLlRqG5Y2WsC9sWGmfh2s24f1X71q8FnW390JdPon9afDkD6AuhjgBQiGDtYhIfxr7eHuA/XHXUTROr9iEYb/dyU6ow3EcT0VEOJ+a5+ph83cYE0iKC7D/VDyBYZsjJzFY8LzzTt9nVitqBlcURVEURVEUZRnRBw1FURRFURRFUVqOPmgoiqIoiqIoitJyFuXREGNmiTgpTIv1/TH6L9Zesj6ZrQm8CNY0Npu2jk3IQ+EY0vBZMlYSurEHg152YnSwtQbqiZMZ1NvVJ1DLNnH8ONT9FILkxGgb2fPiUVhLcwKD3kZ3ou5wshc18X1rUCMoIpLt6IA6Mmc+xlFi6TXymzsjSU97HiYz2B57B9FD8O3/+Cfr8xddgME711xzFdTVCvbHhsF6Yhz1ouk8HmcRkYSH/SPnot6do84OHtgP9fhYEeo+D3W9fow3pp2OW7mIAX2uj201chz9LZ0Oamv9CP0WIiKdXRjI5zi4nWlKQzxyAAOJmnXU+ec72611pFIU8sdjzKzxIorxGC0JJhKZHlMcCjNzSb+eStvDq8/eNQqZcyhYLEsJfskm9q96GfukiMhYswh1KDigTD6J4+bVa7dCvesZHEuiEDudExPWGVHwZFNwvzwaSFMJ7GO+h3WtaWuvA9Ic+yn8TEhjvUd+pjTp9KuxoZH4N/ZiRNPHK4qWyaMxi/mC7VizLSIzgbsz76H+JhSSydc/PvL1uh3MW6mgPp3bkO8DuC6X6Xo5ibr8ZMoen9b0oO7eunfg5EW6jldqeA0fL9s+tQQNvk1ayXe+8x2o2dPxpl97I9RdXfb1I2RfGgnzZx/zeQ7/WWF05PjM8fLIIxJ04rVqoK/P+nw2hW1YqWEbTdTmHg+TBfK3ruFrhsj4KrzKjnfgdg6l8Fq05WK8L7iSAk9LRfTFSeWItc58Ar1K//Eg3o/sPI79a/2VV0O9eQOOwSefRA+kiMjxQ+SLprORPVpBwOc6Li/O4eM52N4B+TVnW2xi8ibPiP6ioSiKoiiKoihKy9EHDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nIW5dFwXXdGn5eg7IdEAhcVhbb+da45oWPXR/rE4sQY1EODg9ZnWE9sCRlJl2tPGz73POp2LoetjYt4GaQtLo6h5q/ewPdn8vbc+Jks6lJZp5ogfbhhvd5x1BUOUQ6FiEjHipVQd61CX0eq0DHz76ixCIFei/CiCfGiqf3spPyJrSs7oH7uBOp6RUSGnn0C6rHVA1DvPopzSP9oN+okA+rTToxhol5H/Xt7hBr63nb0JmR6MV8iS3ORN8iHFCfL5fOE9cdZ8k8kKWghk8D53yPXzsBxHfYW0LzhOVzGOJ3aR/bvhvrwMPoARETyNL95bzfOf56blSlRWcQc3mcLwxkEZK7yaV59EZFCgXTZg5iPk/RwjCxksd0H0t1QJ5L2eThIWSwjI5STQb3o/nsehnr0KOpys+RtiDx7fnZD408QYJ2mOfcT1D9YG5zhCfVFpEaieD9BWRzkqXLJYxaSxy/u+sO+G77OnTq1li1HYxa8/Xx9deJU2Jw1Qp4yl1JXXPL3DB3Ha+4TTz1mrWKiiP0vsnwuNI7SdvM1t0DXw3bPHp/YT8jXv5pQn6Xj7NA2ejHHN0W5XyaFfdon0foPH/wh1JOUCfEbb3mrtY6VA3hNCinTxsza7vB55ab8eHR19M/4RriN0xk8Tk2DuVMiIrk0joldBRoXyENUKeFxrXYO4fLW2n3c78J7o0mD14rJCK+p++j+a4R8lb0rcMzuy9nZMaVJ7PPdNdz38/rwfqUY4jYdIa9Kex+7OUXyA9Se5CnlmwPuHSG/PcajlkrieLdxPfpXRgYPzfy7VkOvy1zoLxqKoiiKoiiKorQcfdBQFEVRFEVRFKXl6IOGoiiKoiiKoigtZ1EejUbQmNGMs7w1QXrFZj0m40LYHzG3xtCh113SCudytgaw0kQtpiHNqSENoB2jQdtIb28m7Tm8m1XcV6eMcyZ7pLv2aH7jiclxqEsl21+QJD1y/0r0U6QyqO1ni0wmhdrIoInbKCIyfhCzDzxq/zXbT2sVo0bcLMxnl+FGJKnpbUpn+LhivbHN1jg29uD+3Xvin6G+bz9mWjxFPhZDvgTuKyIiEel0k6Rj7GvHeb+vvB6PW18b6oAd0h57nn3KsubZp/nNTxwjLxNlM3g51NZWJS7DgL1KuIzyOPbhQ3vRk1FpYDscLtr5D8bDtkilcbvcWedAsxE3viwBjjsTdGPIy+Im8NhGYmvJhf7Gc9FnaBxta8PztpNqNybTwklj3/c99IQFHh7L8RPoTcrTPPJtHvaHZMber2ITlznGPqEkZYwY1EH7Do5HUTrGoxHQvPH0lhKPwx62VY29AbwAscfqkITNrjOlYXZeAN/RmRhHl2PI0xOSr4i8loNHD0D90IM/gHp8DDOhRESCAI9tGOB2sLdkPs+GS3ko1aqtDR8fx+wgn+4VkuSvGKfxituqGXN9TFAfbjQwL4Qu65ImH+GDDz4A9bEh9BuIiPz6r/061Fe/+MX4hlnXoPk8rmeDN77+rZJO29dWERHPm9szICLi0LEkC5AkffxQFZtYnp28B+q2lSPWOsIcjVcJvI4kKMsjzx5GQf9EaLAvNHw7u+NkiGPsyvNxneMe+t6OPv0Q1M1BvNfo6kJ/rIhIuhuvjwXaTxPRvS95Ufh+erJkX4N9Oj6pNN5j79399My/Gw37HDkT5/5oqSiKoiiKoijKCw590FAURVEURVEUpeXog4aiKIqiKIqiKC1nUR6NWrU+oxFv0vz+SZp/t1G39VusxWScgObwbpKOl/Rj6YStFXZovuzIsI4tLolg9uuUiUE63kSPPYeyyaKOrU4aU48yL9ake6Cu0RTfcRkB1QrpQWl+bc/F1+s0ZzxrVp0Yi0WC2jsd4jJzs7Tajrf088h///FdMzrQjnbUieYTlCuSsnWUu0ZQT1wPsP/k1m2GekXvCqhPHEIte0TtJSISULvUqP+U6vj63/zNX0N9/TUvgvrlN+zA5Qf2Ol2yKyQc7OMdCawrpD9OUFZDWEY9qYhISOuNmrgfAfW3/jbU+R8+jn3a4XwbEQlI1DtZxe0ws6TZQUzbLwmOdzovw8U+VxzHdt19cJ/18aOD6L/yaD7/FOVi+OTB8FJYT8Ycq2oNx7DVa1bhMtLkEaMxsqeB506ajlUzsHM0Do1hJ+zMop64PU/z52dJC+ySR8PY34E1I8rqELzmHBumnKVJPPdOTmAfNMYewxLkhYsiuiZNLzIM7TZYaua7nsZCpx17vo4PHYb6R/d/D+ojh7FPx3n9+NRu0nU9RdfDJp3LJdKOt7d3QF1v2MdtbAyPPfs8slnK+SGPhnU9jImJKpfx3G3QGFipUVtQF06T3n1oyM4S+vSnPw31QfIN/vwrXzXzb26npWByYkQa9en9oOPskkeDj8HU3/A9POZ7PrZpsYz3IJUUehk6/JhrMHWPrq4+qDOU95GisaYzg9eubBo9QYFgJpmIiOfi2FIa74A6CvE8q1bQW2LacRsTefvWfLyM5/uJCmZ3rKHsocCwZwM/HzeOJ8kj6LB/apbPw4kWfg+ov2goiqIoiqIoitJy9EFDURRFURRFUZSWow8aiqIoiqIoiqK0nEV5NKIomtGFBiHpLskD4Hm2yJHnfbZq1pzWURvnOrjMkMMiJG7ucNStsWzQxGjF53r/RM3WRDdC1Am2d3bjOsgX4lAGQMZHrbFLelIRkWwWddPsuWDNME3PL2ET2zKK8dB4pJVNkoY5Ozsjwo8RsZ5l3Cgh7rTGsz6B29a/th3rTZdbnz957DmoyydQVzmwBueu9tLY5pxlYqp2lkOSj4tHWTD0aL9zN27TyXHUAdereJw6Y3IT0tRJG3QcvQCPfXt7J9SGvU4N1C+LiDg0lzhH4Lh0vnsVbJtsgvIf2FgiIiHldyQosyY1az+b7tzn7dnCuKmZ/IyhE6iR3ncIPUBjEzHnmI/eohSdRokUnceceUIfcGLybDyfcwmwP6xehf18kuZbT4yjLrpZolygmK+nLtyCuT5r1m+EOgrIY1bFfh7VsS1DE7dflJvkYb9d3Ye+kCf349z24+PDUDc92+OXJP02b4cbTbXl0qcIzU+cJp7h8ac0iTrvRx6+F+r9+3F8Kp5EjbyE9jpXrByA+vjxA7yhULa349hdp2tTtYLXXM6rELGv+z6NR0nyhRQKqMMfn0CPR7VqX+f9BF6nE6k0vY7rHC+Sb8TFzyd9O49ichLPiy984QtQnxg5re3ndloKojCQaPp+x8qVYl9VzL2VQ/7BiO/PqD+NF4tQV/J4zU7H3MG6Ll5HwjLlrjh4jid9Ggdq+Hn2i/me7f9c200eIA/vASsVHN+Oo/1TKtSn+/K296Q8iv1rKMQ+HZawv7kh+d7oHHFjRjHfJY8GHcJwli8pbKpHQ1EURVEURVGUZUQfNBRFURRFURRFaTn6oKEoiqIoiqIoSstZlEfDdR1xp8X/Luks2esQpxdlTwYT0pzcToDa4dBBjWO5irpfEZGIvCP+PLpV3m7WehrS6CZjsjtGjqPOdWIcdYQZ0nK2kYEiIsF7I2FrN2s0sbdHXgA2Zfgp3E6X9jOYtLM6kqT/L42hpjkqntagR6VJ6/Nnm85sSvxpb0hHAfXYK7owm6QtY/tcTBt6E8I6tvPwUTyOk03MzQjq2B+DEmk/xfYqdfV1QN3Rgdtw1VUvhnol6ZtNDdfRlrb1oYbyHEbr2BdGJnAZiY5+qNPkEarHaKDL1F84n6ZJ+uQjpE/uWolZDusLqJMVETk6UoS6h+Y/LyRP79dy6JNFRAZHijOZQfvJk1FrYhtkcjGZO/Tdjk9ek1SavCsuanUdD49tZ0+HtQ4Xu5ilQWY/TcrF8amDuthYgOvs7cVjKSKycs0aqAt0ftYqRVzmCdTAN3w8X+McOBk6pxs0Dzxnq2wYwPPixCh+fs8xuw/Vmtj5g5C0/2bq9eeVYdEKjJm5ZvE1ln2RTsz11qeW3bN/F9SHjuyGeoy8C65D153I9jIU0rhdHQXsUAePHIK6sws9Gg6NLZVJ9IzlOjrsdVKukkPXy0m6XlVIt9/V3Yufj7lVGR1Df4phnxpnlNA1t1Enn1JcjgHlQXHuxNf/85sz/w7Dpc+yGh8flWRyajyx7/k4RyNmAdRIST6PPNz/Y6M4xlaoDbMRHjcRkZVd+J4SbedYmbxatKF+Aa+PPpnSUi72VxGRjhyaLrJJHP8OljCfptQoQj04iPceq/vQ8yYikkljH29SWxyn/tROWUXJDLZtTIyQddDS6RS94XRbcsbTXOgvGoqiKIqiKIqitBx90FAURVEURVEUpeXog4aiKIqiKIqiKC1HHzQURVEURVEURWk5izKDe74v/rRxlAPj2CgbxYS1+PME9iXIwGzI+Mjmt65u22w5VkKjj+VHomVYr9NmG3J8JZNsjhFJptFMWSGjaprMRFGT2opMXbWabRIbq9PfKDDPT+Dx8JPYln4XmqaaTTsQxk+i2ejw7qfxDbXTxqxa1TZCn23yWZGEP3WAclk8cokEmZjEDoTLk7Gp+/xNUCc70IhdppCxhEuBfYHtpmLDX7YN2zSRRON1fz8az9o7MUjq2BAaJwuBfco++NzjUE/mcJ3bNl8M9f6TaPAsGaz7+myDnaHwzHVr0fyW6kSj7WTxAqg3bsK2PklmcRGR+kNPQd2kPn/fkztn/h3GGCmXgn0Hh2bGPj4lM3k8dhGnHYlIioLDMjTmZZPYzpXKENS1Kva5dB5Nh1N/w+MfUbBSnSYYqFKAaIGW2bkBz4velRjGJyKSoDFwdAzNjUkaAzncK5tDw3DcxCFsnq2UcYKCOoWpZsmseMEGNFgOj6NBU0SkQuGrbGg9FRIbLpMZPAzDGRPwfAF9cROhBBTsOnoSQw2jkCa8aFBgaAEnaHBS9nHi/pWiiSI48NGnUMqVAzgmHtizF7cxZrczNLmEQ9+hZjN4bk6OF6EeG8V2WLt+vbUOnybNOHjwINQ8QcXAAJ43Y+Noauf7BBGRKML+ZyK+B/Jm/dv6+Fknm8ueHsPmmwAoxlHPExSkKaS1QRP+TA5ifz02jMF3Rw7awcEdbXiNzFPOZ64XZ8twaTs5yM7QLV+YtNdZpfvEIML35D28PqaauM4ToziW7RnG4EYRkU0rcYxsurTOLIYE9vTjdbwtMwJ1cd9+ax1CE4OIQ/fks465HY59ZvQXDUVRFEVRFEVRWo4+aCiKoiiKoiiK0nL0QUNRFEVRFEVRlJazOI+G54vnTX0kCEijyno8L0ZA6LFHg3T2WdSx1Si4zlCAXzplb75H62A1XcS6skXqHNMZ26Oxeg1qf5ukiWa9qOXRIL1vumH7C/qofQMKEmTto0t+giBCrWOD04ZEROqkDyV97rNPndbQN2O28WyTb/ckOa33dVN4HKsh6oKdYVt/GHl4XIaGcf9OTDyHyyCfSy6H2nVuYxGRZBL7ZKGOuspsFvt0g9pxcHAQ6sceegjq7/mkoRSR0Rr1hVwH1KnwfKifem4P1K6D7dJZsPdr6wbUTV98HtapPPa/q695Eb6eQu1tPm/3v2d34Xr3H0Odan1WsGUoy6SRd9LiTIeWpUn8m2/vgLpUscPMUuQTylIIXWkcteImi/28VkEPkMPBnSKSTGM70jArVVpGrYrnAb+/s28d1JWavV8+h5ORfymboRBSh8KkKNTUiw13xe3mIC32u9TLuJ397ajjX91jh0YeGMbPONRvI2+q37nB8nxHF0XRgsMC4wLdHDpOSdq/DvL3BKRnP3kCNfLprD0eVeg6EjbwuLXlsc+nyW/YTh6hFeQZGyvbQb2FLI6zpRJuZ4L6yqaNq6E+Qb61Y0M4DouIdHVjKOyKFehTGxpCPxUfp9Wr8D5hfMLW4ZcoGJXvs/xZbbUcXTDhJyXhnwrsm/u9HOAnYgcpOi7el1SpzcZp/+suHue9h+2xaGAA+09HJ4cw4zXXS2J/jOgaW3F5fLTDjsfLGAiZkQ6o1+VxrEmTwa9ON6JHJ+x1eD763hIuLrPo4jXZbL0C6uyqA1BPDB2x1uFQe3Mo4/NFf9FQFEVRFEVRFKXl6IOGoiiKoiiKoigtRx80FEVRFEVRFEVpOYvyaARBMDOXeYNyMzLkXXCbts6b51nmukH6vHITdWyGdNlxGmhLU8Y1T/Vszf08t2kjiMmfqNG84Tz3dUi6t4C1s7ROzsAQEUmRjpUjHKoNbKtmgPsdOlzbx6dO2xlVcZn9Hac1qpwXsRTUooqE0dSzcYo03KUmahrdEDW6IiIJypc4OYoa2R/88An8gId9ur0d9crjJVtjy/3p+hteBvVVV70Y6r37cI74Wol06HU8RY/QfO8iIpNl7Ayr+3A/f/gA5mzUyRdSK6M++ahnt93GVdgnTx7fB/WqHGYrpFyaf7uB54hr7HWkCtj/Bp/Yhevobp/5d7PpCqW8LAmB8UTM1DHxaPis0zmYzdseAD63IxqQWFefIQ9HOsmZGPZ52JnEzICAPBkTY6P4Acq0qFpjKPvxrFXKxARqlNvIr+J7uMxsDtuGrx9OTAYJD835HLZNgj6TjKifR/h6Xzv5RkRkkDwITdvmsKwEQTBzDfLIn8N9pxmTNcN5JmnKhYoCyoLoxayqSgn7zskJ+xpcdfEaWaDLGcVmSEjeywZ5gOpVHNtrZTt/okE+ozL5HzwH+/DKleQxI6/KgcOYOSAiUiwWoV69Gn0e3d2YY3D4MOa0nDiBy1y9epW1jjz5AIeP42dmX3eDcOl9alE09Z+IiInm1u/HncMu34dQFkQpoP6Uo9yhJB63Q0NHrXUcOoR9vEl9I9NNnowCvj9M4HlTrmH+SRDR+Ckiffl2qJNN7OQuXaMd8r9mO/A8K4X2IHt4EDPiXBxyxc3gMsafRc9pTwY/30HZVyIiMoljylz37HEenDOhv2goiqIoiqIoitJy9EFDURRFURRF+f/be/Moya7qzHffIeaIzMipMrPmuVRIaEAzAktu2sYPMMbPrx+2eQvULSMDS1gYGwkbAzK2u2mDLMD28lp2txG07Qa7n7F52MZuMAghCRBIQlPNc1VmVY4RGXPEvfe8PzIrM7/vXNWAozIF2j8v4doZEXc4d59z7o3Y3/kUpevog4aiKIqiKIqiKF3nojQa7WZbWv58bRnXg7pUM+95tgaA38NFt/UW1q2xnwR/vFyhIjURiax6Yq5147pB5xyRHUcx6wrzn0LSmvBnuLSR28XE1L4ZeiY05IsRUT0ul2/ymt4RizxEpNnE9q+cOQPx1NGl9o7TqlxqStWa+AsFvkMZXE876Z+/DTsh/m2A6o83bUGdQY3aI5nEOl7XltJY13J4CNdedyj/Xn755RAfOoAeF+VBrLefrsetvV6CeCaFtZiejwcaUE10uYwajWuu3GLtY/Na1KecnsF9DG3YCbHj4D7qZVwDPIjsOutMP13DbAnfkFzWGx27/nwlKPYPSCIx354ujS3VGtaSJxKYLyIiSaqJr9FnUqSdSpM3RDqN/TbhxNRp059aVKPMseeQ1qSJ165FeqxCP/oHiIg4CczrNPlmeHRQg0NrIOac7LRt7YlHOrViL/aNThrbqunjPmfnsO3Svj2Wt5vYv+ptysmFsTzOo2IlMM78fyIinYDGYMpHE+O3ERlsw1QPtqHvkK8G+QJtG8VxoHHU7oeT5ElhejHnc7TPcglr3vvIb2LLplGIM5P2GDg7i1qGiVM4dxXSOLZnfDym6QZq31L27YvU6ni/Ua9i7f7atXjctRrW7Z88hd4c+w+gPk9EZIC8Onr6ihA3G8s0GjFz+KXGmEjMwj3WeT0WYjQafB/ika9GtYFavkaE40Ayj7lTHbd1Bgf3Yb9waGzJtTDfikX8fCqHfSDhk24yptmjKo6pDTI5OXYAPSsmxjGXnCzmSob7toj0J3GbR88chzifxmNIeHieE/XTEPsxWqcs+X+0OrjP5XNa3L3wC6G/aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonSdi9JoZHMZyS2sXT5HtcVcm275U8S8h+v1JMSaL4/qlZMJPNxhqvMVEanWJqy/nfO4qM6M6w5ZT5FK2YX5LulRWi2sr2MfDWljkV9IdfvscyAiwkuiB7TAe0g1zbwWOdeTlmdL1j6mJ7HOtTqHn+ntXaqHjFahRrk0ZeRsUyccqlUfxOtSY0GPiJTL2Eb9a3Ad9JtftQPiVgfX1G9TG8fV4DctXwO8tqVZrF+uVXEfX/jC30I80Idrs7djcoNr19sR5p/bxDiZxPfzeueppH1eUUg+LSQCclmw4nJ+4D4aVbs+tC+D9d89VOfve0vbNKzFWiFcZ/4/EVuHlvSx3eLkE57Lfjj4pgznLY0/vodjoB/zVVHQwOsdtVmfhRsNQsopOsYO1YK3O3YOOi75MdC5J6htUil8f7WGY40T4/Nj1YTT4Mz6J88jTZXH80tMDXkH+2+rye+Zb/DV0mhExizWRlvz54VtAML+QfRy2LbtSogr4+iXM9SHfXJNGe8DRESmS6RdovxL5/G6+Ik0xDMlrF8fGsRxYd1mjEVEemu4jcE1WMvPqeOTH83gIGr+Mlm79r9N9ycO9ZMW+WmdPo018SG1fZzPTpO0jwnySklnl9o/ziflUpP085L059va6o/n8ygTEYe0dR7d07XJP8LP4HU1NI6EMd+VHz5QgjgR4nXasRs1ZgEN1IkK3julSOvFOiYRkaiD81mphvP61FHUSzgR5meBfDhGB2yPnzWUPycaqPGphqiD3HcazyPTxLbfQn5LIiJ5GpdDfkSIltqyY2KETC+A/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdS5Ko9HpBNLuzNd5tdoteg1rC+NqqFNJrOOuzNF62FTz57lYr5dMUE10jFcH1+lyHaGhOjf2k4jYn8LgMTRb9vrG9TrWZnJdNX+Ga5xDqn8PYpYnzma43hi32QqxrvXEkX0Ql2dQGxA27HXqqxW8Hi7VT0buUh2r5VeyAky0W+J689djdvIUvDYr2B7Fgl1/GNK1rE4chXjLRvzM8CCuaT41hRqWnTt3WfsYG8PjOn0a104fGkDNxakTuL52JoU1qbN03SSmPpRpU990qJbb9bAO0/OoXep23XWK6omzVK+coK8smlT371PfTft4niIiRTq3neuxXrxdXzrOea3KE9Y2LjWl2WnxF+qEc1n2csFz8iL7exzWVnFX73RwLGg28P2zIfZbx4v5rsjF692TwXrzJF3/Cl3vyMWjmiujfqJ/0zZrl8l0nv5CYzONw3Uaf9jDJ2jZGp4m6QLbdayDblHcbOG4XKFh2o1puwTpnTyqKT/bsjHl5yuC4ziLte+sEbJr4uPWuffoHdgGW3a+AuKjNGYeOfQ8xLmU3YbrR4YgnprD69Zo0XhEx9Qm3VJzAueldNbep0PbSKRxLA9pvDozhbmSL2AfWTNs18h3aBtlquU/cwbnhwSNB36S9AdJW+/J15Tvq1rL+sVq+Gi0o444C3X6rBGyPMhcu5PQVCNt0lrW6JwK/ajDTfTiPGRKJWsfvW4O4uPPj0N8ZO/TEO/chfvYRPqeoR7cXj6L46eISNTCnOzUMVeSpMlIJvE80uQPksnY8+PMoRMQt2YwhyP2ESKfjGwB72dG1tvjeD+N45YMZ9kYw/5K50J/0VAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6+qChKIqiKIqiKErXuSgxeKPZEnfBMCqdREFMu01i8BgzoWYD1XgRfSYIKQ4wrlZRfFIpl+x9kCDQCVB9FHbwuCxhtiGxJpmSNBu2WVWdxJRtEnzOkSlbrYIC37kSmrls332FtY+bXvFyiE8e3Q/xvgk0b2lXcZu5LAqFSjGC3w4Jf3K9KOrLDG9f/HcYtEXku9Y2LiWFbXnxFlTHnofXsWYot0LbzChJ6V6bQYObPc88B7FpoyDLoefyr/7vr1j7iCK89qzPfOJxbLO+PjSfKvagcc94DU2f2ExNxBbSsgGWT8ZkkcG2MUKGbHFtl0FB3HAORWMhiXc7hoRoJEj2Ivs8ToyTwL+O4sqgtdT3Ou2VN6sSEQk7ociCQNYhoSyPVy4r5MU2euMFMjpVvFahiwL5gBZ9MA27H3sJ3GauH0WAYQ+ZSNZxTAscPO5EtghxJtdv7ZNzLgrZ5Arjch3Pg7/yMjFC0ohyP3LJ7Is2QocgDp1XnQzWREQCGgTZIDFYUEcaszpq8OVicF7ohMXgnmdP79b5kOmb66BIdeNlKA4PItzHOInDRUSOnUTT3KkZFHOzeWOS+oB9XjjvF/K2UDageb00i8fAYvEUCWd7Ctguxd6YhWbITHN6Guf1chnzqUFGhZwyXtLeB18PNrYs9CwTDbsrPwa22q1F1bclBqf8uxDT5jadb4XG9UQW70E6ZOiXT9jmjTdesRW3OYjz/D8/9M8QP/LNIxA/34v5VaSFAgpZO/98Fk3T4FOhcT/YMAzxIJnVJps0PorIyeM4P1YmSxB7JFIvDOM+dm7fCfH60Y3WPrwGtr/DCzQtGz+aMePnC6G/aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK6jDxqKoiiKoiiKonSdi9JohO22hImF+soW1vUmyPxormHXb5kA69YKA1g73CQTp8E+rAU+fPQoxKdOoRGLiMj0BNbjpfJUc0a2Mi2qqe9QzWCH6pfnplH7ICIyOXUG4okpfM9MCevtmnP4equD550usPmViGOuhnjtILZNqR9r+3uvvwbi2Rpej6ejY/Y+hjZBPLL9KojzA2sX/x20m3LgX//a2salJBV5iyZoJsB8i0Iyq4kxS+N6UC/AWmGnjW10Zhyv6+i6dRDnsli7KWJrk2qkGaqR6ViN9DvDIyMQs2ETG0uJiPT0oNmPoVr2ThvzyyPdUrEX863dsc3S9h9GDdDAZZdDHNJx1lpoZlWi/HM920zsmaNP4T7HUDOTSyzVoLLx3UqRSKQXDfvEpdpyIf1XaLdjgQzhfBqCZ0hXUHdwH71D2O/NbIzWiurRHTLeDNNYY9xMYG3vVdfdBPG2qzB201jHL2KbdWWzeAz1GurS2oYM+xpYx+/HmLGm85inLukE0z1Y5+y3sW1OnMJjmKBxW0Sk2eY6c2w7T86OIauj0TDGWBqGi9wCRGyKy2axLplS7roC55VUjBazQnXefgbnuzM0h/LYIKS9qdVxLJkhA0kRkUIONWTJFPUB6puei30zl8F+5sWYHdaq3NfwPQUyk3PqOCaWq5jj5Vn7PITa01Ctf2PZfBGyCGkFcLykON58W/l0/gnWUEX2GO3QtS3T3FRu4HVp0v1ch4yC14T2OFGew3yZJC2mn0IzxkSA2wgT+PoJHmMnyWhabFNcIa1vhwyXN+8kA9wkadxa9j4qpCf2hvCej90QUz14HoVB3Gfk2ubTPWQUmKG2Wm4o2WjYhpMvhP6ioSiKoiiKoihK19EHDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nUuSqNxaO8+ySzUcLVp3fzIJ41G1a4/dKmutTwzjZ8pY11aFsvaxKGaXC+mjrc0hetnZ2hddPYcODOJ758uo56iRvqKOXq/iEiFai+Favz6h3A94wb5hSSo7UqzJWsfkxOoR9m5Cbd51Q3XQnz4FLbt2POoyejf/DJrH6kiahCSGawBdJfXYDor/4w67G4Rf6HG0/MxdX2fvCMoV0REkvQZz2A824M13Jn0AYhHRlE/kUzYNYr1BtaHplKkCSJtU7VK62VT6fe6IayrvOHyLdY+DzYHID5Wwxrp+hTmQtLD/Ns2hPWkbhLPQUTk6cPfgrhWKUGcd7ZB3InwvCpVPO9kn10fenAKNRmpHDZGZ1kpd7A6Eg3xXVf8hbXguQd0rJppe537GvnXBKRbo1DGp3Fs2T2yBuJkD+akiMjkLF6/rIN9wyOtw/WvRt+eHZfh2FAjHxbj2I3fQ9tskk9GRJ8pFLCm3g+xVjuu/twn/4W+PGqT2HOgVsG2PniKNFgz9lr1oUO1/bTuv7PgI8Fav9UgzqdgOazvEhEJyKfAo1uAgPyJDNWaZ1N4DYY3bRdmroTjTYFsB9b143U7PIZz6uQcXrcNG3ZB7Lv23DMzhZ47vTkcm0eonj2fxvPOpDBuNuwxME3zh1PB98xWWMOBbZnLUT/07fuXiPwWfNI9ZJfpAoMwFBH0VrjU1OpV6Sz4BXXIb6lBfkzVwPYc65APy6kSjm+TpJM0pOFIkg7hTGDr4E7sQ28XM4f93GEfKQ+POyL/kwzdZzaNfdscJvC4fNL89I2MQhyQLm58CnUkawr2/Utx3WbcZxr7GfeLQdJA7zt4GOKhraizFBEZKhQhdukex1mWj45/4T4u+ouGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK17k4H41mc7EKr9bAekQ/j+v7p1N2jVmL1sOemsR1zEuzuL72kw2sQesfXQ9xrRZTY0trDR8/egTiaapXP3YEX/cLtDZxhPXJ1YqtPQlpDeVcL7ZFJod19rUsajiaLVpTvmXXvpVn8T2HDZ7H3hNY53piFmsX2y7W8WfX0HmKiOPhcbtUH+ouqwHk11aCq3bfuFiHzbXTySTWDid8O/+4rro8h9cyn8Xa4YE16FnQbmObGmPXkfebIsQuHWdAXh4h1bk2W1gvmnGwZrXj2jWpjSQeN5fQBy721fQA5p+TRf1OMm/vY87DWtojM2MQp2pFiGtzpyH2yXvBD2z/h1aI44PrkEhrWVsad+XXkBcRSSZc8Rc0VR3KB+uIYr7GCahu3hh8U2iwX3G9+rEZ/Pz29bZmZ9cu1FoNkEZslnwINm3BbVRIR+STd0sybXu5HCNPo+pcid6B2yykyeulieNsnb0VRMT3qZY6j/lRojFyjPQtT+49CfF0xa4hF/LNYF3hWW2acf4tXhY/OK7rLo4prNHgOIzxMQhJAyDkf+WS9s4hzQrPdfl+rAMXEdmxGzU+zz2O9ecTYzh27BhB/5Nd2zEfq232JorJjSKOL2ny0fCpbdIp1Evk8xj3F3FMFTmriVhimPSes3PoiXSGPCAmZ3B8a8XozFpN7N9NB+Pqsvub1fDR2L3jckln5ueP6Q6OTXsmsH9NlFA3IyLSJqOW2Yg8nny8ToU0zlUhtXm6F3NHRGRk7UaIh0hTYWjOrTg4DhjScEzN4jhSihnYm3S/2z+KY+7Ldu6AeHwKc+XoSWy7HsfOv3X9OK63prAf5DzKaQd1c1NlvB4mZfu1DW/YAHGSxoPlOrl6Dc/hXOgvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF3nojQaxZF1kllYx7l0DLUNxV7UAKxba6/vXpqhGjHykzgWYXxoL66rP0j6iYyxixyNYA1gp4V1bIUcrt+eSGJd28b1myAmiYYcrNp1aWEDtSKuhx9qNLEO0aHac4fqFGNOS546iHoWL4GeD4FDHiMZXG8/k6DFzOM0FlQf7jqs0Ugs+/fKGxkU+4qSTs+fB3uosBbCc+3UdqjesEU19okEXpesg7mSyWC9aDJp+2jwcbXIb6bRIM1FgDkfdjC/fB/3MSZ0HUVklv4WzKF+p13BGlMzgufZzmPtcMOPyXEP61bTtJ65L9g2cxO4jVwC274nY9f5O2RHI1QT7Zr4f68klXJJ/IX19HMFHPOofF3cGJ+foMN11XgibXrddfH6f/8QarHqEelYRGRTZi3ETxzBdeVPHEdNzk/8e7x2O3ZgPXHH4D7+6Utft/b55PeegDhBHgEZ0mT0FnCftTLq8zpt2wPC8/A4UincRps8Ik5O4Bg5Vaa+xxogsb1QPNYCLVyuGHnWihAEwaLOy5iL7wT8CdYHhg3sc+xN4pLWoRPj5ZFdgxqLXdfg6+3gYYjHTxyCuJ/0FekkjhWlMzi+iYikaPzPp3FMDEkbNT2D+VatYz8rFFDzISKSz+N8UDiPFrNA3jL9g9jWM2Vba1Ii/dQ06VbnKkv3GoYHnBXghhuvl/zCebVID3sz5dJc2z6/Bl2HNnltlMmfqUmaxlQGr0E+b2tN83x/VSMNbIPut9L4/rkOzoeHT6PesBzz/fzpCt4D9hbxuAazGB+dPgrxhh7MnZeP4BguIvLyzTshTlz/YxBnqC8mSQsc0Zw9mLN1IKMF/FuatK/pZfdAlQpP2C+M/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdS5Ko+FmcuIt1Fan81TfRTWSXM8uItKhGsa//7u/xdebWNNXK2Ot3NFDx/H9jl0DPVvCGsc21fqGER5nlmrSOm2sGQxpHfVUyq4tb1PNn0R8XFQz6GE9aECXIUrY+ygHuI0e8nxIpbEe1HHx/ZHHz5Qxz5ikYfD4M8vqlaNV8DHwfX+xPr5Onixn/36WfC7GR4NqGFmTkSHdgN859xrycRoNrps2BvMvSVoZl68TlqCK72E+Toq9z8jDc/cdXN/cIw8DQ2uzBx7mb8exfVyiAM898jBuBXg92oJxxsPxoBPY+/AoJ9n3BLxbXLs2fCWYnhoXb+E4jGB+JLNcLxzXx/C4I9IEROyrQdqr2Qa+//E9p6xdPEp/Y/2ST7W6V81hXf5ADXP4H7/8TxA/8/Rea58d8jrwyGciIo8Uxy1BHArlg7Gvr0MGMc0mjvUOtTf7HoSCbWlidGbGIQ8Z6s/O4v9fHZHQxJkzi3Orpfei+veBAdQQiYg0yYeA8y+RwPElSWMke1hkSPMoIrJ2La7F37NxN8RX0rzSTx4Yhw7sgTiVw9zYvA49CkREShXUhGXSeB6Oi9c+Erz2DbpPOD1t1597dD/CipcwwG2y71KTrk+nY+efR2PvAPl7DGaXzqsThrLvJOqQLjUJJ5TEQj/kNh7uIz8n655DxFC/TtBYFJFOt0Nt2qHPWz43IuLQ3MCtzFpNl8YN9p+ps64kZlzvkPeQ0H0kz5e3bd6Ox0Sir81FW3uyJoeeIZkUtn+ChIs8HkgK+7Ifcwtn6NwnZ1EP9fBXHlv8N48/50J/0VAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6+qChKIqiKIqiKErXuSgxuHGWNHqDQ4PwWppMdiKxlSYh6eeeeRZFhWzylM+iOPdfv/U9iEfWrbf24fgo+iqQ0KzZQrGVP4cisrkaxmwSlUjaJk8sPmqTaDhB5niJXmy7Deu3QjywaZe1j2L/KG6DzfR8Oi4yrCMNfKyU0SWRlJDhGAjjY8zILjWlUmnRQIqF3TkSJboxYuFOB689i7n7+lBsxe8PAjYRs/cRkZjKRPiegETQLBhs+bQPnxYj6NgLBQRkGJnKUA67uE2fcsOl5HAj2xSQhbgOOVkmfTyvTAbfn0iTQC/GbIr0w+JSlnrLrnmMVnhFGFkzuLjwwJlJFMoNpXCscXjAE9tULqJ28EjYbwkbXRbIxx0l7tf1z91Xv/rQ4xA/8q2nIZ6aJtG1b5uZuRGLpukCGcxzFmJHDoni2SlVRAxtM3B5YQVeTAD36ZBBrOvFCUnx+rDo21lYAMBZpQRstVqL58nny+Z6kxNo7igikicjuu07UZTq0TYDEklzzAZ+IiJpn8YKek/P6GaI19KCGH7vEMTHj+2DuFzG8U5EJEnzcouMent68bx54Y88CbPLVVrgRUQiyj+H5sA25TTfazRquEhHHIP9KOAfoDkpl1m6xs12R/75CTQ7vNQc2P+8ZBfuy7JkCMeLqzgxg1OCDGh9+gznn0/3NbzoCxvkLuwY95nkbdBxklzcpQUg8jQxJRP2Pr0s5hfffoS0MEUQYm6UyZgx2aFFKUTEp4UqPBqb9jyPiyh8/etfh3jLVjTS3LEdjVlFRFp0z3NmEk22Z5cdZ7Np95EXQn/RUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6ToXpdFoBx3xFurUe8lQhM1DgpgabK4Vft3rXw/x3Cyazxw/hgZ9w6Ooydi0FetLRUT2HMCaxVqDjFPaZLJj8JgCMjBi7cOGzVjnJiJSbWBNvElh7XB2YA3ExQHUWwwMogGRH2MK6JHJn0caDYfrsKnWMaSaYhOjoRH6mzFYr5dYXngYY+p2qXEdT9yF8+7pRXOgZBLbnPUVIvP1zcvhuknGpzblelCurxcRCQI2eLQN9s51DKwbcaiGtVO1vxsIauMQF3ox5xNk1FOkmtVEh+pknZjzovrkiOuR62hw1XGxftOhbXrGrnNlc0yfcrjdWtpmEKy8YaSIiETBYjcpFNAkM+J8itFosHaNNTtpMkwzlGMRC1lYVyV27a7n4DDPRzU7h/niUt/2fDY/s6+dy4dlWC9B4yrphNjbq80GWGJrNJL8IToGj/RNTe6vxh4juK7c0g0ttDcbj60UrusuajNY+8AGXbk85qeIPYY9++yzEOdJ6za6BuemDM1tca3QJrMyflOSdI/9w+sgrtVxPu2p4tjipOzzmp3Be4eIzDQnp0oQ12kfuRzqDZIJ+9aI73lYB9n0qLY/1w/x8GAR4jidT44MhOdqaBJ44PjSWB83x11qjInELJjLVavVc76X81OETFdj3sOxS/nqUxwz/Nmw6Sb3cdon6+jYCDSuX7FGlLfJRngB9ZGZadRC5DK2TrJRQ20S6xxPT05BXBxErZND4/iZ6RizRxpTU3ReV1x19eK/axegOTqL/qKhKIqiKIqiKErX0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdS5Ko+G57uI6x7U61g5WaG3rMLRrqGcmxyButnAbPi0+PDKKWoaNW7ZB/Oh3cP13EZHxCVzbPpvDmseQ6qY7HTxOP4m1mmGENYEzFbsucmjDyzDehOsTZ/tQW5JMY90brw2diPGASNB7eE3vIMLjOltHeRbWdPi+/YzZU8Dj2jRchHjL6NIa341aVb78B9YmLimZTFbS6fnaRa6bjDUGOQ9cR8mai/NpOHgdexGRBNX2cpkq10jz2uO8RrebxtePVe38K7roc5DL4XGV05jTeaotTkbYR4zYa3gbOXc9ZpXqqEMfL4gxtFZ5TNMaytE21SDXl3nchMEPcMG7QKvTWayNTWewZpsPiddjFxHpkA+BRzWxnFOs+0iShiPOb4LtIVijEdBx8dr2vMXIYD2xidkn/8mjHDMk4ojY64M24MWMgXZNO+ntWINB++T+7nv29Gf1ed6ke1ajsTrf0bU7ncUxxNB1ZG1EJoP9XsRuA9vXB7fRaKAfRT6Lc0Scj0G7QxoNqsvvRHwdsB593Rb0kUr3oEfB0QMHrH2Kgx4itkcKXteJyTP4frqcuazddjzn+j4ed4KOwSN9J/f9SfIoEBE5MY5/MyRCqDWX2rYTrLxGI5PJLOZVnEZxOXH6HUu7QPcpPGHawwDpSGPuM3nHllbE8NyELyesMZn8xGI8Lipl0gJT21inQfNhOsXeHvZ5Vedwnucxt7eI8/jAAGqEuK2jmPnJ0JjK7/HcKPbf50N/0VAURVEURVEUpevog4aiKIqiKIqiKF3ngkqnzv5E21hWLsU/7UQd/CkornSq2cAlL3m50aiFPy3yz7hsec7L+YmIhPRzYkDv4WUxuTQhImt4riMIY37SN/xzNP10HLTxuF36OdSEdBli9iHhRZZOWT8f4s9/JrSfMdsJPNlmA3/Oa9SWfhpu1OdLafjn+0vB2X00ly1vyiUOF1L2ZOXbeT7zg5ROcXvwNrhUgZco5Jx3aVnYIGZJw5BznJbniyjnuds4tPSeEfu8A+sn63OfV0A/DXd8Om/P7ru8tLShssbl5VJn/70S+bd8P8uvp8PnzN/bxCwDG0T8sz1+JqD1VCPah8s/f8eUMVkVRpTngZy7dIC3aARzMm7ZyoiHTZf7Fl5vh0unuAwqpu9x6RTnHM85fAzW+2OWtw1p/LcqOxau19n3rXT+LZ8Ded8da1lZ+zpxGzRoTuVP1KlEupbGEkpeflREpBOcu3RKuHSKjzPCcbpO5VuNll260uRx05pDMZ9aNAjy27mcWSSm7Iz6e0Bl2S7FPHZzaaiIXQ5laB/LX+8E8+e0knPw8nxYmdIp60aGDuziS6fixi/c5rlLp+Lmfd4nl5eer3SKzyOudNSn4+Azt5cCpvLVLpROLV9e+GwuXEj+OeYC3nXy5EnZsGHDeTemvPQ4ceKErF+//vxv/Deg+ae8ECuRfyKag0o8mn/KaqNzsLKaXEj+XdCDRhRFMjY2JoVC4fxPg8pLAmOMVCoVWbt2bfwTfhfR/FOYlcw/Ec1BBdH8U1YbnYOV1eRi8u+CHjQURVEURVEURVEuBhWDK4qiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidB190LhEHD16VBzHkaeeemq1D0V5CaL5pyjKDwO33XabvOc973nB1zdv3iyf+MQnLnq79913n1x99dU/8HEpLw2MMXLnnXdKf3+/zpmXiJfcg8b5BjVFuZRo/ik/quiNnXIpePzxx+XOO+9c7cNQfkT58pe/LA8++KB86UtfkvHxcbniiitW+5B+5Lggw76XEsYYCcMw1rBHUS41mn+KoihLDA0NnfP1TqcjiUTinO9RlBfi0KFDMjo6Kq985StjX2+325JMJlf4qH60eEn9onH77bfLQw89JJ/85CfFcRxxHEcefPBBcRxH/umf/kmuvfZaSaVS8s1vflNuv/12edOb3gSff8973iO33XbbYhxFkfz+7/++bN++XVKplGzcuFF+7/d+L3bfYRjKf/pP/0kuu+wyOX78+CU8S+XFiuaf8mLnXDl17733ys6dOyWbzcrWrVvlgx/8oHQWHJYffPBB+e3f/m35/ve/D7mtKBdCEARy1113SW9vrwwODsoHP/jBRcdhLp1yHEf+5E/+RN74xjdKLpdbzM+PfvSjMjw8LIVCQe644w5wUVeUOG6//XZ597vfLcePHxfHcWTz5s1y2223yV133SXvec97ZHBwUF772teKiMhDDz0kN9xwg6RSKRkdHZX3v//9Eixzaq9UKvKWt7xFcrmcjI6OygMPPKAVDAu8pL42/eQnPyn79++XK664Qj7ykY+IiMhzzz0nIiLvf//75eMf/7hs3bpV+vr6Lmh7v/EbvyF/9md/Jg888IC86lWvkvHxcdm7d6/1vlarJb/wC78gR48elYcffvi839AoP5po/ikvds6VU4VCQR588EFZu3atPPPMM/L2t79dCoWC3HPPPfLmN79Znn32Wfnyl78sX/nKV0REpLe3dzVPRfkh4jOf+Yzccccd8p3vfEe++93vyp133ikbN26Ut7/97bHvv+++++SjH/2ofOITnxDf9+Wv//qv5b777pM//uM/lle96lXyP/7H/5BPfepTsnXr1hU+E+WHiU9+8pOybds2+dM//VN5/PHHxfM8+Q//4T/IZz7zGXnnO98pjzzyiIiInDp1Sl73utfJ7bffLp/97Gdl79698va3v13S6bTcd999IiLy3ve+Vx555BH54he/KMPDw/KhD31InnjiCS0nlZfYg0Zvb68kk0nJZrMyMjIiIrI4iX7kIx+Rn/iJn7jgbVUqFfnkJz8pf/RHfyRve9vbRERk27Zt8qpXvQreV61W5fWvf720Wi352te+ppPvSxjNP+XFzPly6rd+67cW37t582b59V//dfnc5z4n99xzj2QyGcnn8+L7/mJuK8qFsmHDBnnggQfEcRzZtWuXPPPMM/LAAw+84IPGL/7iL8p//I//cTH++Z//ebnjjjvkjjvuEBGR3/3d35WvfOUr+quGck56e3ulUCiI53kwbu3YsUN+//d/fzH+wAc+IBs2bJA/+qM/Esdx5LLLLpOxsTG599575UMf+pDUajX5zGc+I3/1V38lr3nNa0RE5NOf/rSsXbt2xc/pxchLqnTqXFx33XUX9f49e/ZIq9VaTKoX4hd+4RekVqvJv/zLv+hNnvKCaP4pq835curzn/+83HLLLTIyMiL5fF5+67d+S8vwlK5w0003ieM4i/HNN98sBw4ckDAMY9/P4+WePXvkxhtvhL/dfPPN3T9Q5SXBtddeC/GePXvk5ptvhhy95ZZbpFqtysmTJ+Xw4cPS6XTkhhtuWHy9t7dXdu3atWLH/GJGHzQWyOVyELuuu1gjepaz9cgiIplM5oK2+7rXvU6efvppeeyxx/7tB6n8yKL5p6w258qpxx57TN7ylrfI6173OvnSl74kTz75pHzgAx+Qdru9gkeoKPPweKko3UTzq7u85B40ksnkC35LspyhoSEZHx+Hvy1fX3nHjh2SyWTkq1/96jm38853vlM++tGPyhvf+EZ56KGHfqBjVn500PxTXqycK6ceffRR2bRpk3zgAx+Q6667Tnbs2CHHjh2D91xobisK8+1vfxvib33rW7Jjxw7xPO+CPr979+7YbShKN9i9e7c89thj8OXfI488IoVCQdavXy9bt26VRCIhjz/++OLr5XJZ9u/fvxqH+6LjJaXREJmvLf72t78tR48elXw+L1EUxb7v3/27fycf+9jH5LOf/azcfPPN8hd/8Rfy7LPPyjXXXCMiIul0Wu6991655557JJlMyi233CKTk5Py3HPPLdaJnuXd7363hGEob3jDG+Sf/umfrDp65aWD5p/yYuVcObVjxw45fvy4fO5zn5Prr79e/uEf/kG+8IUvwOc3b94sR44ckaeeekrWr18vhUJBUqnUKp2N8sPE8ePH5b3vfa/88i//sjzxxBPyh3/4h3L//fdf8Ofvvvtuuf322+W6666TW265Rf7yL/9SnnvuORWDK13hXe96l3ziE5+Qd7/73XLXXXfJvn375MMf/rC8973vFdd1pVAoyNve9jZ53/veJ/39/bJmzRr58Ic/LK7rQrnVSxbzEmPfvn3mpptuMplMxoiI+fSnP21ExMzOzlrv/dCHPmSGh4dNb2+v+dVf/VVz1113mVtvvXXx9TAMze/+7u+aTZs2mUQiYTZu3Gj+83/+z8YYY44cOWJExDz55JOL77///vtNoVAwjzzyyCU+S+XFiuaf8mLmXDn1vve9zwwMDJh8Pm/e/OY3mwceeMD09vYufrbZbJqf+7mfM8VicTG3FeV83HrrreZd73qXecc73mF6enpMX1+f+c3f/E0TRZExxphNmzaZBx54YPH9ImK+8IUvWNv5vd/7PTM4OGjy+bx529veZu655x5z1VVXrcxJKD+0PPDAA2bTpk2L8a233mruvvtu631f//rXzfXXX2+SyaQZGRkx9957r+l0Oouvz83NmV/8xV802WzWjIyMmD/4gz8wN9xwg3n/+9+/Amfx4sYxhgrBFUVRFEVRFEX5gajVarJu3Tq5//77rSqDlxovudIpRVEURVEURekWTz75pOzdu1duuOEGKZfLi15ZP/MzP7PKR7b66IOGoiiKoiiKovwb+PjHPy779u2TZDIp1157rTz88MMyODi42oe16mjplKIoiqIoiqIoXeclt7ytoiiKoiiKoiiXHn3QUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6Tr6oKEoiqIoiqIoSte5oOVtoyiSsbExKRQKaqeuiIiIMUYqlYqsXbtWXPfSPq9q/inMSuafiOaggmj+KauNzsHKanIx+XdBDxpjY2OyYcOGrhyc8qPFiRMnZP369Zd0H5p/yguxEvknojmoxKP5p6w2Ogcrq8mF5N8FPWgUCgUREfnox/6rpDMZEREZXLMJ3jNTLkNcqVas7Xgu7i6ZwKegZmUOD87DJ2dj8P2On7D2wU/b9XqN3oHbmJurQtyoT0EctJoQr1+70dpnPpM61y5kcM0IxF4C339ybAziSvmMtY9EgOfRqGFbTc9iHAq2zdAwHkM7sO1TXDqu3r4+iPftfX7x3512R/76f/71Ym5cSs7u42hyu/Q4noiIhNTkTiukuB2zpRZEkRNAXDeYCxnJQOx5RdxcLm3tIaKcdbKUs7hLm5Cui0efp/MWEYnqHfxDK8KY+00T20pCfL9jYg7SxfMK+3P4mR6+ILTPMWxbp1GydmGExwwennoW/zUnkWyRsRXJP5GlHHzDj98gCX/+uDIZD97TP4r95fjhU9Z20l4WYoeub7uFOVqtYr/PpjHnalXs9yIiJsR8uGznDoh3bMRJ4fiRAxDPVusQH5ssQTw5a+8z4+F409vTA3E7wpzKZ/A8BgrYdr6XtPYxOY3tmcngPvsKvRBv3bUb4m9+53GIDV4+ERHxPOwL2Rxer/LCPNcJQvnf39y34vn3np+/VVLJ+fw7c2YS3tNTxGPNZO350aWxIJPCdk4ksVH4m8qAcqvZobFERFzBbaQTeBz5HMadTgPiJB1TsT+PO4iz/qKLWa1jvk3P4T4qNGaWK5jznSbfN4gM9mKOZtI45k2WZ2mbOJ5lU5jzJrDbrlrD/RaLmNOd9tJxtzuhfOYfn17ROfi2f3+t+P58W5smjlUJB+fc3VfguCMikvCxzdavHYW46eN1qJRxrJk6UoK4VoqZ59uYXydOYT955thBiAtZ7DfFPLZ5H41lV1y2xdplwsd7hZkynsdcDe+Pp+emIfZpuMuk7IneFbrf6OD82Krh9ejtx/MYXluE+IYff7m1j/QO7EeRj/3Ezy7dB9SrTfl/brrvgvLvgh40zt68pzMZySw8aGSzeKPR6OABdUL7ZoUfNFIJGukD3EaCbtoiGiTdC3jQiCK66aKngFYbjzOiO1hX8PPptH1zmaFJkx80spTI/KBxtk3P0mnZSZYI8DhNgJmZTGJbhIKvpyhxHe/8Dxp8rsmkPfmvxM+oZ/fR43hLDxoOv4fjuJ/y8G8RvccX3EiGYo+36dh3KhHdkDs0Ucce1nJ4Er2Az0cu5bh1Tdxzv0x/cIT7jP2e0MVzdzxqC37QoLZyYuRhhg/M8EVd9hlzdrsr8zP+2f0kfF8SiflxLEnjV4r64Nn3wd88/JtLDxomxJuPhO9R7J/zdRGRiK4fHxffXKYS/AUQxj7tw/Psa+fT3xKUD5GDec3Hbe3Ti2k7/sx5tpHmm2h6f/yDBuYTb5O3sdL5l0r6iw8adv7554xFRDyaQ9Ocsym61jT+WM8Vrn3+rqHrYOUfxr6Lc1syja9nMzTvXMCDRhjhcaVbuI82nUeqhcfshHbbpZOcX3ic3N7W9aFcimJS53yfcYw9Nq/kHOz73uK4FtE9SYLG+FTKvj9L0D1bhr6kdXzcZqdFYxXlUicRM1cZyi8ai1xqL36Y9uj9PP7xMYiIJOhJIZmge1l62OZt0rAeO3dwv+LzjHxM6mSC8xOPMZvF+04RkUye+hHPPzk71y4k/y7oQeMsqWRGUsn5m+Z6Hb/p71DPdV170z0FfDIs0DfCphe/uchTQ7h0MU3MzQonyewsfssQBJiYg/TNd62KT2fV8gzEPfR0KyLCz0sV+paxTL/28Hn00Ddx9uUXmRnDbx1T1DnyaWzvKfrWcWqcbj4y+KAoIjKyDr/pXNNfhPhQetkDU8z1vdR4xhFv8eafbo6p7zvcKUXE4VmS5itHeADBb8F48vHa9j5Mlh46E3zzzMdJL9MkauhB2aEfL0REHN5ohvZZw9dd65s0Pgh7H0IDjkvfSjo+7bNN50FfPDhif5tnwzeGS7FnHLmgTXSZHVsvk9TCDezYqePw2rNPYR8dPzNhfT6bwTGOB+lqFX/58ej1kaFBiJtV+5vXtYP4nm2jWPJw9BT+gvqvzz4DcbG3CPFwsR/iTh2/ORMRyeRwPEnQZFyvYV8an8D48GH8FbeH5gIRkeFR+pXEwb5x4MRJiCdq+I3y2Bk8bzfmhmFwFMd/n+4Ge3rm+3c75pv8lSCdcSSdnB/7c1m6WaGfS/mXBBH7Ad+nXzACunkMaIDim6yeAn6JJiLSqOOc2qYv8xJpvI7ZAs546RQ9jDvn+yJFrC8l+IY9Q9ts0i/6CXpImIv5ptwIfbtL83gY0nnTvUUxh/N8Ty/2KxGRlI/3K8ZgnqWTS+e5KlqJsCOy8MWWT/Mlz02zY/itvYjImfETELt1/FY904dtkk7hr0h9NCx4AVagiIgEbez3V15VhHh063UQR3TcczM4BufSmONJ1/6Gok2/7vTmMcf76deFa669HOJNW/GXncOHcC4RETm4H+ebHTvxF9sohccwuh3bMtGPOZ/dbI9hYR630WzgLzPtZdUS9bY9D7wQuuqUoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK17moQvvp6VlJp+e1GSmqA6/R6kzTM6j0FxFp9mFdbjSA9XcmwJovh+rVadEG8RK2OJlrnMulEr5O2pKQauBdqsPkOstGA89BRCSgx7UyrZTA5bz5niLEHgukYlYzyuaxBro0jboPQ5qFRBK30e5gnezpKaxnFhFpdLAtqiSgqy9ri3Y7blWnS0tkjEQLAgIWlwqJlJy8nRtCmgqnhufndnAbgcH6947B3PFbJWsXbhtz2smR2C2Bx831oYb15nSexrPrciO6FE6TNBkt2oa9hfPEIlGKxN1prlOlffDKVgEvDhFX485HRuL9ZQK5yISrotGozM1Je6FOvUor1lVKmC+ZtK22arWw5jUk8Xc+j0XIQwOot+C6+94YQV8PLdRx8PAhiMdKWDvtpLAGucY19b14HTatW2vts0XXrtLE84zoddcn8Thpm+o0n4iI1Fq0ehHpA9q0wEWTNFbrt+LKe/WmLXjK9WB7Gsrb5sJxdVZJo9Fs1cQs6M9yNLb4pJMaGcbcERGp1LBdmy1sA16cwKV6dFvUb49HTRo/Oh2c133SeaRp9TBe9S6KzrdUnwhr9gyJpnmFy0wa54daAwdRL0bfwqth5UhbkqlgDjfHUaPVaGDbrxkYsvaRoOOcnsZtmGWDnlmFAdA3OfGj+fzr60HdQcJgGxZSdm6s270L4oE8aqJqDcw3XjxyYB1qGUY32m3YaeP9V1DHcfr6DB530sHrmBQcV6IQc2GmaZ/X9Bxei2MnT+MbaGwqVfC6VgIcL9ftxmMUEbn5etR1bNu1DWLXx31kinjczQhfPzlm61uyAd4jDfQNQ9xefpwde4x+IfQXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK5zURqNYrFfMpn5+jU/WYTX8lS2lsnapnNsEOLQGtG8PjZ7CrCegutnRURq5KwZUA00b9Mya3GwSdpkRFivYy2diEixgDXRvE3WjUTkDxBSraXj2DqQpIvHEbE+JcRt5sjwhbUpXozEotbBtkk3aU31ZS+zgfVK4IQdcZz5tnJrlHBN8ptI23WUpo/WfC9gTa1Tx5z1WuR+3aaaxI59naSC19oytOqhemQ6TocbltfsjjFadNpUV90gz4qAPSxYs8GajBgzR6qjFpZosNN8nXI6ojimvpj3yj45zjIDKMe4IhdeIto1pqdOL5q4tWiN8VTi3OZTIiJrBlCDwTqOYl8R4oSH25w4jXW1rZi1zCdY60YtG1COFdO4zyR5K8ySq+2mYfTbERE5Q1q4UhU/kyZT02IvxpU5bMugE2NESP4vXEefJbf6ZA7bv78f68EzFTsH203S8IWkN1ioc+5EqzAAioibyoq34PlgDM4Jns/zpz0GJshPokUmuWwum6B5hnOpyWOiiAQ0Tw8M4nr+7HHBTvasrwhp7HBjTAItn1PSkrDZnqHzqpEPmB9jTssmpKzf5ONiHUiH+mW1QXOF2H4ehnzB5uaW9Aer4eVSyA8vms+xKSdZeUmzhX4WIiIRaUVTHulTk9hHS1W8jocnUX9RHLTHiV4y2yiRRmM9+QTVZ/E6nqmgho0tuaodW0ObzqIeKlcg1/hJ1Cyv2YxjaIF8N9o1e3wxPvaLI8+OQ9yYxnvfmSk8j1ID225s2u67v/yOt0DcS6bNU3NL848TxTievgD6i4aiKIqiKIqiKF1HHzQURVEURVEURek6+qChKIqiKIqiKErX0QcNRVEURVEURVG6zkWJwa+86hWLhlJtEg6TX44l4BIRiSxBKJnl0TZcSxzO27MFM31FFJ7xcZC2TxwyyzMRCrZau15Gr9v7TJD4mw+UzfIcEpWxCZIxMUrtkAyFHBTiOC6J9jy8tGwwZVuy2eZMPoktg3DpPOq1mvyvz3wmZiuXkKQrcva8yfDL8eiMOrYZlzTw2rokzDU56g4lbA/XZ3F4zD6mUHAlMyiIM4YWDiiSsIyEuBGZJkozRgze4I7B72DxNy2QwDLsOI0XKf0c7puse2bDPhJ4XpjZFF5js0xEauISeAUoV0qS8OePo7eAAr4UmUSyqFpEJEPGdDzoTU+h2HviNAr6eP2LdRts87yQDM7qdRQJblq/EeJmlca8ABc5qJOItUzbExFJkWiQRcMFWgiEuq90sthWDVvjLgnaR5NMQ5shCsoN9R2nMoP7iBGDuwEZhnVwH+HCeQXB6hj2hZKQQObHZY8cbA25f56eKFmf99PYcXK5HL0DX49YmE0TKJvNiogMjaBpqdCCLJ0GjokemZDy3GUvVmF/P8rzMt9LkA+hJUpmEbzDc7qITEzSQgx1bP9aC/tNsY8WHyAT3cDY80fE0xjdWOWLS6LjVvtCjAy7SxQmJFq41+iQuXFI9ygjI7Zh5JH9ByAOOph/w2SYKQavixfgnD0zYZvO1epk1pjEfdQjHLdnqjjGnhrHcSLVjzleIUNAEZGZE0cgbtFCAXMlFKTPhtgHyk/iNiOxr22WFlg6deoYxF6Er2dooZmRHdiWb/nlX7b2sWZtEeK5BrbN1/7+m4v/bjUv3LRZf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOhel0ZjHWfhfrCFzSXcQa6pDugLXJfOy8xn2Ua2nF1NL7lPNKB+FodpLQ8WbUYR1lIVerDe16tlFRAKqW6W9+j7Vt59H08F1sPN/Y52H3b64Sdzm+fZ5sbAJ4UrgrCuIs3DRHT4dl2p04+pXqW6SYydP9coZ1i5Q3Ndr74ONnk7PYlzC+vaIje7IdEvqVMdr7Jpoh0t9udDXylnaBwseUnbHctJcN02wZqvDx8A17TH5RwZjrGUyy82sonPn/6Uik09LYsGwb3AYxwY2ImvW7Brso6dOQzxdw9rcFI0V1QbmaLEf95nKcI29yNSZMxAHpM+aq7OZHtb2tkpo5OSQdutMuWTt06PxJUfn4ZLWQait+odRW3d61t5Hhy55p0kmfxHuI5nAsZwkHRK5dg52SB9XpzHirPEgjz8rheulFnURrNOTgIxia/YYvaYHx6x8YQ3EE9NYO16toe7AIT2hn7AbIqA2DOu4zbSP+ZigMS+ZwVpyP3Hu+wIRkbZlnkrGhJQ8pTkyK0viPrlPiIg4NMZ1aJxNUM5HpC1hY95mjOFr0Dq3C+mGdUv6qmarIyKPnfP93aY8N7N4j5XwUEg1UMQ23LTd1o8dOb4X4rkWjn+5DuonyE9SSmQ8HLl2e03N4N8qFZxzr/2/XwlxLYHH0Krg+NgKMHfcNfa8P1XHMXd8DLUjTTKwDU/h5wMaH/Mx+bd+FPtqSNtskU4p3Yf3Irf8xHUQ73o5bk9EZKqG89PD//JNjP/XI0vHHFy4UFJ/0VAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6F6XRiCIj0UJdItdJWvEFbC/gReEJ12XdB9Vsx9Rqnu84ogBr4aZo3frBgSGIm03Sorh2/XqCPStIT3G+82TOp7+4ILgdwotf9/1cmpnwIs+pK6TdxQXRWXPikCbISZNWQkSkQ54pTa5Fx7c7/ViLaUpYy2liahSdIawxNQk8DjON9Z9Og46BdSRchx1XHG51A7r2znlqKfnzftywwLoO1mSQJshwvpHGKGaEMOybQefqLDNfcGL8bFaCTZtGJZWcz6PaHNZYz0zi+uuD/fY68qyHaTdxGwHruxKkdaA8r8ToJXoKuNY81//OzqBuKJvDtevT5FcxNY1rqbO3goiIR8c1OFiEuEF6gTXrhyGeaWEddSJjj4GsTqrOkreQi8edSqB+pUH+Dcaxx8QEaawSNGakF9bk78R8dkXotEQW+nO2B30aJMUeLeRJICKJFI5P1SbWgpcbrOch/yWDdfmOsQ1PDh0ew/d0cIzbtWUdxEnSYKRp/kzTWJ5M2zo1lmxVSds2OYP51yYfFC+J748C+7yyGWzfDPXNiLZZI7+ZNpkNub49R60dwLr5gLSGKX+Zl9APMKf/W2mHpyVamJPoMkmphJqpMzPj1ueDBLbz+ARqG1p10kMItvlMicYiz9bBNanNNm/eDfHAwAaI9z7+OMQOndjcBI4bmYI992zciGN9nXQh5ekJiDsRzut59nGJ8aHLk+Ys7WH+lEjb278ec2nzLvRPev65Z619PPzwfoif+Or3IA6mlq5PEF74far+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ1LkqjYYxZrNNnLUREa0rH6ScuFt7mhWgX7OPA10+eOgbxvv3PQHz9dTdCPDFRgnjN0Ki1z8HBAfyD1TbcFudum7i2O9+5W69T/IOoPrpxDbuK4yxpFLh+nz0XWNsgIpIiPxP2GqHScyeNdZMtH2uNay37Ob2QxP16A1gvLz24TXeW6sZnsbZTqlj36oQYz/+Rzou/P+CaevKrMC6t8d2060OdEtYse0NY/23YN4M8DUQssw9rH9b3Hnwa3tJxm27omH4AKnOz0lqozR47gfXFPmkE1g6PWJ/fsQXrZH3yZjk9gbW8vf1F2gI2SsK3czCixedrFcyxkPQFVartza0hjQfVPMd1rSzpQhrkB2DIK6ESojZlYm4SYj+yd5L0UE+QoBr30ixu0yWPJPq4JNP2PtIJqv+nNfRbjfm2DYLV0Wg4QUecs/4f5MOQSOL5jgzZGqEzZbyWjQ75ZlDfb7cxl9grph3j+TQ5i9e+VccxK50nbw6aZgI6phblUi6HY6iIyPAIaiur5N0xV0NtXD/50XRIK5VO27dGbdLPFdKY8w75ZIQJbOu+HrxPSKbsvlvswW12SPvWbi+PV35+3nbZoCQX/IyOH0LPhbkKahhPT+JYJiIS0ng3QZqLmRDnGcPeNxHmI+vJRETaJK+5ave1ELdq2O7NOTzuqI1zcCPA/BvK2/mX6Ue9VK2Cx8n3J2MnUb8SUl/umJj5jTShg2kc0K65GrUow5eTJuNJ1E5995tPWLs4fgCPw2/heJhylmLP8sZ6YfQXDUVRFEVRFEVRuo4+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK5zkT4a0ZIG4gfwzTgf3fCP4HXmuTbu6NHDEB868BxugNamzmb6IV4/vN7aZ4fqWF2Pj4E/ce7zvBB/EPYU4Qtg2EuB9QgxbX0+TUZX/D3+Lbje/H8iInz+7G/ixRSS82foOgTW+ePrnQzWZn59HfpsiIhcO4vrtW8Nsci0ncB9hP1UON5Da6ufwvOoz9h1r65gTWla8DMOaTgMORI4gscQcJGriHgVimndb2FdhyFNBvsOxKQaZ5dxOGfj/72SlOYaklioUx8YRr1WpYSNdPjIIevzm9athXjnRlzTfcNa9JeYLGNt+eQE1jSfKaEnhohIJonX06GW7e/HMa2Qx/pin3xUNqzFY6zUMcdFREJa971Sw7ZwSaNROon6Fpf0BUGMTsjkMK998rxwydMhbLPoCsNEwp7+InpTvYI1y1Ewf5yrpdEwfkqMP99/Da2jX23idZlr2F5HM0085za1WUBaq5D0PiHb5wR2R+7tw/X7oyK+Pk4aDo+0NKyFaLdofiXNkYjImQqeaydgjRie18Q06guSlAprR0h3KbZvRZs1MuQVNDpShHjj1i34/pgx7PQ41u4nkqhBSCyb19w4T6VLzHPPHxZ/QRfmRdhoSR91exu3bLU+P0oatRNHvgxxeRpzuDKL+p4ECa3SdbsRN6/bBnF/L17L73zvYYg98st6+VW3QnxmDsfcasi5JZLOo2fPwChqhtoGc76Yx35z5iSeZxTaXjE9WdTv3LIbNRnZIp7HMycwl848jXNJe8r2cSn4pJHxKeebS/caQYyf0guhv2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nYvSaDiOs1Snf27bBsu/4uznz8X5NAIX4utg74M8LUhPsYbq2kyAdZfZLNbKnTyNaxGLiKzdgDXMhQLW61l6lvOeh91O1mmdrz6TdhGF7EkS9xHWgeCb3GXPpY6ld7j0GOOIWVhfmpvQoWMVzz4+9tZwXEx/n2pwO3XMhT0NrF98zNh12pUG6iWyVPOcS+NxFbjWm9bKNnms0c207drhch09CKYjPIYMaTJ6KHfmHOwTp127Bn9zCxvcm8KaU2mR14K1xjbnfMz14feE3DbL4mh1auSPjc0s1pSnEiV4rb/YA3Fv3l7j3SOzlhTlYMfFNpgrowaDa+Y3b8KxR0Rk3QjqQLKkLZqYmoE4SVqHk6dOQuyS/mntiL3PyVmsYy5VMQfbbbpeFOZCrL0uZMh/RkQmZnG9+2QCP9PD4y6t2c9DnmvsGmXfwb/lMth3Wq35McDSyK0QgZORzsJa9iaFNfE+pdvx4yXr85GHbeRSKbgx2I+jEPONNRkdWwayOEafJaS5x1A+eSls8wRfN/ImajRwXBYRqZLXBuvOQjrOBmmIWKPRbGI9u4hIsRev+ZYt6JPTl8eNFHuorV08iIEB1LKIiPgebuPQYeyLs6WlWv5mi72JLj1PP3Fy8R6rvxfPb/MGHHdYGyEisnHrJoj/+Ytfg7iZwVxpTqMeohVhbg2usceigbXrIH70u49C7GdwHs9suxri3T/2aohfsxU9V/7u//1f1j6np/ZBvHYYr22ng9eqQdfZaeCcGzbt8SWbwH7ikX7n+Djqjg4fPoAbII+gRMK+Dx3dimMKycCk0V46rk4nFNlrbSIW/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl6+iDhqIoiqIoiqIoXeeixODzcjpn2b+XvUIC01ix8UUawp1PPL5oHniOz3hk3LZ+HQqFTh14CuJWC4VmJ0+jQdqWna+w9rn1sl0QWzJVOibrqKldoshuJxY7s3mQ3Vb0fnqVtdMiIsbhz1iK8mXHuPJiXCeZEWfBTMyQIRyfHwsS5/+If2vXcBuHmigofI62+iUf4/E5u/s8N4MmOU81UMz2ijSKXHe5JIS01JWUGxl7n5MeLmhwIiKxJb2/l4yWznRQHNcJbJHhT0X4nh1tPK84aTcSnfPV2L+SIZBpB8teWh0xeBBFi2mUSaJwbrZKZlNzMWdJ1yZBpoSFHhRu33Lz9RAPDaHIcPdlV1u7+N7j34P48EEUBZamUGCey2FOTo7h4gIDAyjqrJVQ6C0iUp5CoXY+hducmp2COJNCIaNDiyZs2IjjtIiIS2LIySkUoLs0sLZCHMt9g1maaNpjRCqD5oVhCq+Pv+Cy1umsUv612+It9BP2pNuyHXPj5FEU/YuIuLTYQJKMFNl0MiDhdZauW4pV1CLSpn4gNE+PUj45Pl6XRgf7SLWKZmbNmOvGCxYkfTIhPc9XqhGJ4Kts9igijWnM+xOnsR9tv+VqiH0yKW3RNmfKtKCGiBw6fBzjg8cgbjaWxub2auSgScvZe4tqBRPwzJkSxE8/8bz18a1b0Eyvt7cIcYvGgauufRnE69egYXKzaq9GUC6dgjibJJH6mp0QH5jAPrGxjLm0JUSD01Tfy619Jms4vkWdEsYRJmDPGjR7rU6fwGNmFbaIlGrYr774r1/BfdD4lsxhX3VpPj1dwnFeRKQvxPkn34/jYaqwtOCJ245ZCeIF0F80FEVRFEVRFEXpOvqgoSiKoiiKoihK19EHDUVRFEVRFEVRus5FaTQ8z100q4rIOIX1F3H6ivNpLs4Hfz7ONImPg/UOo6NY++uT6dGTTz+J79+wBeKX7dph7dNzsBnZx83SjVhbIDM0+w3iUQ2qkzhf++NBBCHWU7KBn4iIQ8+dToxx4PJXV5xEQsRfMJ2x/ODofOL0QA2qiS2h7uAb9RLEnytijWNIdecR1yKLyMQcGj3tb2F98RNkjrcuizWR6RSZXZGhXytGPyFZzL8giUZKDhkVshSi3cLP5xt2v6qTeeEbA6zJ3+3geURUC+7Q9fAu5DsO1tk0l517jFniSjAwWBTfn29PNg4rzWGbNKtURC8ikxOYHxtGByF+7ev/D4hvuPEqiCcmUTP23DP7rX1873s4hs1MYy1ufw41PS2q/R3qw9eLPVinOzlt1/a267iNgRyeV57MpQaK2JcaJWy7dgW1AiIifZTXx6aPQmwEa4Z7hnFsZ/2LG9oDbbmEuo9GG8eIdG5+G+Eq5V/WbUl6QYySIJFGaRyvgR/YxnaRYO13p4Ft1qphfgZNPM8szZfFAsYiIp0WXjsewwpkLOiRkVi9hloIl+rb0769T5ZsdUhrmcqgZiOZxoMoVfC8Xd++NarVcDx6/InDEBey2G+2b8Z7jclJ1HScPv2ctY/T42jQJ3SfVcwt9UXXiVe6XUrWDOQX77vyGZpnyBVx4sQZ6/P1Cs6Ha9bgODFVQl3RwADuY9dW1FscO4jaBhGRzYPY7qwd+Zd//jLEbhEN+QbedBPEx0vYr54/gWOEiIiZxOPOtHGcThg8jwbdj7k92AfGD6L5nohImnLYIcPE0jgew2gP5nhPD/ab0pw9/rVLZAI4gducaS6dexijJX4h9BcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrnORPhpLsD4iJF+HOM8M9rQ4n2bjfL4bvD0RkU6HatipjrEdYB1hg9aiTqWxji2Txrq4VIx+IkHnEVIRvE/HyW1nSF9Qq9n1yROzWCtXoRrmFnlAuD6e17p1wxD39eGa6yIiUcgaGNKeLCuEjdPHXHqW+bj4VOjL7iQtW8sQlbE+NDWHtcDpANuwQjXcHtUON2aw5lZEJGxhTXfSx20ECYzP0BryHrVrk4qP6w277jrnYn1njmrZE+fJPyeB17mSxO2JiHyD+lF9DutW/x86zlHB9uduU3Bihh7qB9boUFu6fg5rclaIVqsl4UJelMtUz05jTz6HmgARkZSH5z1H/fjA/oP4ehnrgY+fxJrk555FjwwREY/WYN+8eRO+HlEt9QRqLrI5/Lzj4vvbLXt8SngRvQf7yratmyEu9qFGI+1hTtZnbK+OkMwQdm3CbR6dOApxLtcDcb2GfTOXtNeq52HNIU1Vpz0fd4LV0WiMru2TTHr+uGtNHM8qdaz79rM4d4mI1Dvko2GwZxZoLGiRP9bsDGpppk6PWfsoDA5BHND4dOQI1p9vWIdzUS6BxxjQMbdj5p6I7j9aLczZDnkMeD6PNdgOvmtP9OxT0Ohg/vzj//4uxEP96CNRyOL7e/N2/qXJl8SntuvrWdKBNC/Cx6Bb7BwZWLyfCdrYHtynCwk7/9oN7INrRtCjYv8hvNZhG/vfd773OMT9ObyvEREpz+L41KninFno4Dx/+Ahep28+9n2Ik3SrtP/4IWuf/hhq5V5OXjEF0jLV0+QR1Y/Xvb3BbruN69BDpErD8DT1zWyB8svBffpJW+vkeJhvHnmH3fTKy5aOsR3IoaN4PV4I/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl6/zAGg3WV/i07nSc/iKKqC6NNBiWIoP+wDqQmRlcq1hEJJ+nOsEC1unOzJYgHp/AGuh0Fuvb67TG/Hcee8Ta50/+FNYZ1qkO8dSpUxBPTmJN9DjVuR4/YdcATlIdNWs0QlrDWhzWaODa0rfd+pPWPm668ccgTlG9qLhL1/Tf6onygxC1OxKFC0lB2hnhetCY+lCHfRmoHnHbFObnSBnrxMey2KZcPyoi4ri4D4e0I2FI9cbk7ZGi8+JWDmN0S4027sNL0D5JL8H1x+zREsZc2iCF9Z6PUVuk63gePxZhvfhm2mbBxAw9DrcnaUk6S/1q1TQa7baE4fxxsUYsQX4AvmN/j5Oktk6Sx8nXvvYQxJs3bYS4HWI7b96Cr89/ZhvEQ4O4Vn2rWoKYS96r5A/DKbdlywZrn1OkV4ro2s2SpufYMdS3bN+E9ccv2z1q7aNJx31ZDo8jsQfb8ug4agEa7KOTthM9mcRtZDLknbM4Ka2ORmP9+gHJLaynPzlTgteq1Ad5HhIRaZRp/f4EeqSsWY/5VJnDfWRS2O+mpux+2DI4ViRy2IZTrL8Zw7lt43qsb28GpJfw7H5Vo3k65ZBfSMTXmnyo6DRqc6h/ERFpNvBvfD+TT+G9w/FTUxD3ZPE8Bq9A7ZSIyOAa9HRwSReybePS9ak3bZ+eS02705Iomj+PTAZzx5COr9qi/iYiZfLb6SnitXYi1A00anhfUy5jm85OoC5BRGQgh14buzZdAfG6tdh3N9O1P70P9bAT338K4mLK1ta0SngtEuvwPU2SPbZoks3n8LrPpWJ0upM4ng31oxZq904c5wtp1AieniRNIZvPiEhhCOfgH/t3Pw5xbsPS9WnW2/K5z6pGQ1EURVEURVGUVUIfNBRFURRFURRF6Tr6oKEoiqIoiqIoSte5KI2G4yzV5nN9olWzH6fR4Jh0BQmPdB8UHziMa8afGsOaNRGRG258JcTtDtapPkX1dqzZ2LYNa4OzVDP/zNNPWvscGx+HeGoGdR9Hjx6FuFbDWs8gwLo4x7Fr5zyqS02n0+d83VD93TFquy/O2rWNo2tQx3HFFddC3GgvHbcJV75G3vi+GH++2DGsYv2nF1Ddb9pO7chQOw9iPegrUnj+HzqDtZrfpZR+KGmvY/5kQP4m5NvikEdKgrRNbfJiMNTPUhnbm6Fj8FrXqDY2ZVg7QDoBWjvfFkvZfTckD4JvhFijeqKJn3g9bWDEsXeSpnrkiHxcHLO8L5vY47zUtFstCRf6muVHQmNesxXjebJsHXwRkRuvuwHi8iSOHS5tsyeFn9+4EXNWRGRqGsfFkyfQeyNq4/gz2E8aszq+nqSa5CBm/f4ErfefTGP99tQE1mYfPHAM4h1bsV59wxassxYR8V1a0D6J+3j0aVzLvlzC8+jrR73e0EDR2scs6R46bfJZys6PGcasvIeBiMhAT1LyC34MmSTmQrmC+ehHthdJs45amlqI82O+iFqZTWuKEE8eQz1hpW6vxc/jj9BY4ZK3UJs8SRoNjE+fwbp8P23vs6cHdSA18jwydB3Zu4pFGp1O3PUlLZxr6FXyz0rgHF2t43gwV7U1NNdftwviNLXVxtHNi/+u1W0NxKWmZ6B3cc6q1fB8fIP3SqfP2Bra4xM4NqVyOMbTbY00mjhfJsmLpDKNugMRkW0DqMm46ZbXQPzYd74NcWsar0OlRFpBzpW8PQfX5/A99Sa2TYPzy8V9Zuhet78P9RYiIqdPYdv55Mn1Uz99G8TPPXUYY+q7Xr/dj17zpp+GuGcQtSNHJ5e20WpcuE5Xf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOhel0YgiY2kzXoi49f5DqjdOp3D3YR3r7Z7f+wzEx45jXe8117/K2kcqiUV+FarxS+WwjvCWV70a4uE1WH83QR4X01S3LyLy3LOo2yhX2eMC28Kj2vN0FmuNvRh9i+vhNhJUn5ckzwuP6vCjCGtOUxlam1xEqjVsf66l7dSXttFh344VwE2lxD2r0fCxVtNMkubkZMn6fES50OpgHW+SPFhu6MOa7is9zK2fcXHddBGR/7eB1+m/R1hXOdvG2s1EG5/1kz5qHTLkB9I7gmtni4hUm1iL3ixhjvrk79BqY31ohzRCnDsiIkGA/T5BmqCAamefo3xLtPAYXy52ffE2oQJdnxYfX66xMSJi25hcclqt9qIeKpfDsSKXxbjcsmuwO6TBKc1in8vQ2ud10nPNlFHDYXuPiPT04HiSy2G7hlQP3NODdbgTk7SO/GEcd1nTISLS14d5mckWIb76KtS+bdq1A+JX/9hVEG9eR3oMETl9BtvqG9/8HsRHDp+EuKeA51Xsxf6dzdnr4ZfLmPs1qqsvzc2PM8EqaNRERArZtBQWrmeK5gCWpRVS9veILdIe7BsnTRjNPb1FzKXBNGppKuSPIiIyR/4lSSppdzs4VtPQIs027jOZwvydrdj7pClV0mkcO3IFPIjZGTyGiMbApG+PgeKwtgTH6ip5eRg6Md/DfDseM0edPo05fsXOLbjPZvy/V4q+gb5FTV+N5tNjp7D/VWJ8GiZpbhrJ4Ry6YRv20dMnUJ8TkN7w1VfdYu1jfR9qNP7uH78E8WNPfRfiRHYrxP0j10M8QNrVZgN9X0REOuT10iiXIK7Rtff6sJ+FlFuO2DoQiYq4zRqOw998DPVXpRnsRwPr8X55/W7bD6kW4D3P3m+R/niZ1q7TvnAfF/1FQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpetclEbD9z3xF9ZQNqTBuBAfDf7b9AzWuj393Uchrpaxnu/yq18B8ejG7dYugghr3TKJIsQ/9bo3QpxysI6y3cYayf/9T/8IscPFoCLS14f7SJD2pNnEWjYT4fNdKonrGZsgzkcD2ztJ+8jlcBusC2F/hs3b7LbbuBnrQSNa+7m1rOa8FVN/fqmZ93GZ/7efpvrqDSMYr6dYRJwKajKc8TP4Bsq3Vhn9B3wf83dtAdexFxG5sx9ry3vKqLH4VBs1P7O0jn2bfDdyWaxhTeZsXYg0sFi32cBtJmgde5ZZVVqYnx1eB19ECqQ/SGcw3zzKFdfB9+8l34FHY+o7Nzm4TYc8RiRc6jcxErAVIZXKLGo0uAY7pHZ3Ivt7nDqtnV+poAbD76G89rAm2fMwn5oNWyuwaSPW5m7dgn2hL4t6ikLPMMS7L7sc4rGTRyG2fFfE9gRIF3Ad+FxPEfdZpGtN3kHffgJ9f0REvvL1b0L8/PPom5HJkLcQTUHcL8Zqdq1/i/KS9UvBwji6WhqNduhIK5w/sXwP1mjnC0WIa7UYryTyHxqbxjGvL405OzeLc3SK+t32GL+Tdgvn0O070JvjZAbzZ3KyBLFP+eWzD4dnj0+lMo7tWdJoFIt4X1DsxVr0VhO3Wa/ZHjjsoxF0MGebLRzjLJ0k+WzMlO3zOHEC23u0vwhxKVrKx3pz5edgk6iLWdCD7rgSx5XwOM6nW9fYXhCRi7kxU6I5OYttvPGqAdoCzn+33vqT1j6e+vazEE+YJyAe3ILXoV7BeTyX2wnxyDDqx8YP432qiEhvBvMtH5GGVHBMniGPnzJNh2Foa4QcH7UkE3PYFsbBvtvXj+N8XwrfH9gWJPLkKbw/iVrkbdVc6jdB58LzT3/RUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6Tr6oKEoiqIoiqIoSte5KDE4QEI7z0PxCovF5/+IQp9yBQ1fegZQSHv1tTdAnCNTqErbNo3LkGtR1EbBVoIM0FwHjzNL5mbXXIuGMHNzcQIuFC46JGr12eiHjruHDLU8blwR8X18Jsxm8TxYgD5LRkrZNIrfrroa21ZEZHgtGrhUGyhYyi0XIq+GGjcMRRYET2ws5bLyk4XEIiIDKPpK9JOYu4GKrHAKzdHMGTSiak6RmFxE3B4USP3CehTYz0zhdfzTKpochR02z8P318q2gqtM5kBNMpLKdLDf9RTQFKlaRUFep20L0dIpFLcl6DsKQznrpTBukBHdNzq2GPw2ite5NKYs6zarJQb3M654C32xXcGxICBRvRj7exyH2q1ChnwujRXDwzjmOR4t0EB9VETkyOEjEBd7sC/0ZjHvDx/eB3GVBOo7d6IIMREjBj94CEWE2SKa5UkSz+voUcz7cVqY4btPPm7tY3oOhcupLJmU0mINHLfp+tTrdtslSUScJCFydmFxhiAIReSU9flLzaETk5LNzB/T0ACKwXNpmhMSOA+JiHTYeDPAHE61UEDeJlfM46fxGvQWWKwrsn7zZvyDizmf78Pjbgb4eofGrxYtTpFO2wti8HAQkJvd7FQJj6EHx8BiEeMotIWupTkUiHdatACGi7kT0gIYhu410nSvISKyZhjbM5PFfnNo3+HFfzfbK+9Y2vbaYhbGoPVbUOD86qvQKK930Db2nKb8qU3jdUo62CYbRtEgMpHFe8QzdF1FRNwctnNuCPPr1Azuc+3myyDetfsmiI3Di0zgfauIvTjNvhkceyK6XwnJxZIX5Cj22UL6RpMWI7DeQQsbBZjDrqE5uWkveBAYWvyijZ9JLFsMyXFjTC1fAP1FQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpetclEaj1WyJ78/X0HWoljydxjq2VseuHwwM6iVGRtHsZ3TtunPuv9HCzzuObZrUCLHe3I2oNk6wrqxJxd6uwRrBgUHULWzZtsPaZ3kW65ObVItpyNjHp7r7hIvH2JvH2kcRkWQSL1UyhefB9cj1NtbnJbNYM712vX0eEaWDcbFWdvkenNV4RA0jkYVr7lL9q4RkcujFGN6Q2Zl4WFfpkOGXux7z0QxjHWWCDf9EJDiNuZBJYi68NoNamX+u4TEcphp8KquUVNU2GdvRxHMfpxxvk7lYgtqG5S3ZLLaDiEgiif2Ce57D7U1vCKmec09MAh2k+tD1pPMwy/umiURsmcclxyTaYhY0GiFdK5/6T7Nu13m79N3O5DTqgIq9RYgTSTbmxHwpzUxY+2A9Vhjg9XRS2A/m5lAvMTw8CvGWHdsgnirZOiE3Mwvx2k04bj7xNJpm/eOX/zfEM9P4+WbbroPO9eBxsy6o2cCx37NmN2z7dkyNexBhX8oXcCzuXdCedDp2hfRKsHfvEUkv6PEcOQSvsXZm3Tocr0REpmZKELuUwx3SaAjlXzrDY4Mtluoh/UOZxqzj41MQN6n2PEV6xCjCfXgJe+xwyUjXujOg+aJF149lR8PDtvYkIE2GiXAbIe2VNRTpJObvukFsJxGRDaO432oF+9rE7NKc0+rYxr6XmqMn6uL782P50HY07JvYfxziV46gvkxEpNHE/KrOkclpA/t0soP9b3oMdVUl76i1j75B1D9M0ng1PoP7XDOCFz/Tizlep3mmUbfHptmjqN8sJ2iOzWLO9pNOshHhTgKx9WM+6U4jct5N0j24EcyPuSrONeNjOO6LiCTzbI6JbVldZigcBBc+AesvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF3nojQaXiIhfszazyIiQYD1ik5M7WaaaoPZCyGgNb5dKrJNkA+HRHa9+tix/RDPTWN93rbtuNZzohdrIj2hOn2DNWs7duKayyIixw8/A/Fki/wnMnjeDfJraNOa352AtARir6/dP1CEOKJ60Ra1bZXqYBv1mDWUA9bA4OvO8ppofnEl8Pylwmt+RCb/gbijMxHXZJOWhnUDHua6U8Tad7eXfDhExC8WIQ6o3riPdEZDtM+JJObfQIhnssa3tSf/Vx+uNX6wjDXQf9nBPlCp4rVnf4FETB83VCfNPiWGNBptqh/eRv1od8qu3+2lz0Qu7TO3rF9EoQiW5K8IyWRq0dMmSuK1C+p4/Dwmioi4pFVhr5pWgDk6fhp1QLRcu6xbj3oKEZEEreffaGA7fvvb34P4jT/1UxDnspjnJ09PQnyKdCUiItN1HIuf/P/+DuLn9+IYeeoMbjNo4zEmk/Z3YODjIyJp8kyaI18mMexfhNcnTd4uIiK1NvaNkEaS0tz8PnisXCnCdntRC8Dz51wFr0G5Ys+P2TzOLckcem3MtbBTJQTfn8tgArbr9j7qlMM9eRwnR0bQC+HAYczxdhU/32xSLXiMtibfg7X8Pb0Yt2iMm6ujVmC2hLkzOkA+MCLSk8e6+laA22hQf+/JY74maY56xW70WBIRyZH+ZM8R7CcnlvUb9kRZCXqz2UUt0PrRjfBaabIE8dQh9MwQEameRn1EeRL72+w0fiZfxFwpkcdPvWNPAicncPzrkPbv5ZejfiyXwrGnVcNjcn3MhS0j11v7fGPxGMRfev7/g/iJEun1fNQnJ13ye2va83w+ifnH13+OPJkCug8NmthWc2V7HDcV8rzpwXm6vkyXEQYX7uOiv2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nYvSaDTqNXEX6kJTpLdwqF404cXUeXNNPJUYui4999AbHJ/WqW7aOoN2gH/LFbFWM011kz6v/0/rbUfkz9DXjzWDIiJXXHkNxN+cGoc45fF5UW1tA2vddrz8Smsf119/HcTcVm3yzcgePQjx9779bYi/8sW/sPbx2p/+vyDeugv1LNVlNdDtlu0RcMnx/SVtgKURweto7JXUbahe3vikyaA4Ir8T/ryIiDOKNY1+B3N+8hT6bExTneMr+lCL81Mu5u/Jhl2TumYUa6Cvy2J8bOYoxF8ztGZ3m9aUtw0IrLXsQ5JPpEh3dEOItdw/O4RagpelsR+KiKSpxtTUsAba8Za1VbQ6NfKNclu8hf7skK4gbKLWyhhbp+aSxiak8yjPoZ5mYNNmiFu0hnu9bq+3PjqEY9TkFNY9Vxq4j9Nj6MUxvAaP8fP/64sQH5vGNeNF7Br3Rg3bIpPDnPIzrFXBWn8nsueP0gy+Z80w5vmGjZhjM9OYP60p/HwY2mNEKoWaBfbLaC/0ldXSaBQLKcmk5tuGvWuabfK8yNkaFPa3CkLW7mE+ten9xb5B3Kdrt2GS/CImZtEj5eRpzJUa54qLOrVCFsdAE7NPn/RcmSweQ5r0PXXSRYpgvk1O2l4JqTS+J037aJRIk0U5snUb+pq8bBdqBURExs6cgvjgKdTb1ZdpLVdDoxGU50QWxrCJgziXOS289/rOY9+yPt+s4HWKGjhPVCu4jfpGvE47d2Kb7T+JXjIiIk4C8/4VV+G909QMXtsO3UaWajTHZnCcGV33cmufV1Twuv3Lnq9D3EPeHLs2oo+ZIf1Pp2bf286VsB9FIc65Y2eO0euYf0m6nzExc6hD8xPfuqaWGc6Ejj2/vRD6i4aiKIqiKIqiKF1HHzQURVEURVEURek6+qChKIqiKIqiKErXuSiNRhiGEi7UfTWpHtmndfUtvYWItNtYU8af4Tig+lCHCsaymaK1jyuvugniKHQpxho0l3wM+LhbLfIHcewm2/2yqyH+/uOoh8gmsA7ROFgjmKb6vZ983c9a+8hk8D0dahtLM0N19vuewXXs2w2uURWZncL1zM1O1GgcH196vV5fBRODKJr/T0QM6SMcrhd0bP0Eez8I1RKzJoMrEA3VPLqdmHWkqaZbKP/SVLf/ygR6FryqZx2+3os10SdOYl2siEid/SdyWNO8tk66JOqHIeV8ENq1m40manLWUvr8VBa1Ja8dwfNYX8Q6V8+3nU5MgO8xs1gvL6Vl9cqrpNGozNTFXdDqJGjs8C6gZNXSbZDW6MwUrpufy+C1HOjFfMnn7fGob7Af4kIPxnsPoNfQ95/ZA/GtP4a15HzI5RJqH0REanVMiLkyvqdcxXpyruPP5fFa91LNsohIRDXvY+OoLfFT2OcLPdhW1RrmsGfbFUlA40injccdLTRGFKO/WQk8JxDPOXssONb4tBZ/2LH1OwkfT7pFWrsOaf08qtkulUoQn5m0fTRSGbx2c1XMjUoZ9+GQ/iudwpxOkndHMm2P7dt3boX4wOEj+AYXz5vvTlz6Sz3GZ0p8PE4vQbpU6ssZGuMu247eCe223Xbj0yWID4+hvmr90FJf7nRWfgzsRDkx0Xz7P/UE6iPSRcy3wREcd0REBrath/jgkycgbtWwv02Mo0Zl95W7IL7+erzfExGpVHB+O7wfj7PRwPybK+Gc2gmPQxwm8P0lx9bvrB/Ca9vsezXEThM1HKdnSriBWbyfatRQRyci0qjgmBqQ50/QYd0sCymxH3kswBCRFGmrO6RlCqKl6xOG6qOhKIqiKIqiKMoqog8aiqIoiqIoiqJ0HX3QUBRFURRFURSl61yURqOnp0fy+fma4SDA+tCQ6rq59lPE1j/wNvh1h2JjSE8hVMMtIs0a1udxKW0qxVoSfD2KsEYwQfoKy75BRFoB1b75WKM6sAbXtZ8q4XrHV199PcT5Atbli4h0yG/BT6Jmo0419MUi1lmnyFshm7NPJEE6kEoDay47Zqk2NjAxGohLjZcUWagh5NywPC1iNEKGahQdH2OhNeVNgLnksv4irkybczaJ+bZxHdaovr2ANfi9tPZ9qlCEOBnSMYjI35XQ1+D5SdTalOg8BnLYb+ao1rsdU3v5igTm9C/2b4H4qjWYb3kP88skyBchTmNBncspUo3v8m2GHREspV0ZjCz64CQy2I6Gxo6Ub69zH5LOoN0mXwMaE0+OY21vgrwTsnm7Drrawn288pqrID5+6iTEew5hDfOV16Iv0Gtf8yqI/bTtcfH95/ZCnEuiLihXwPw5fhxrs33qv9kYDwiuCa6T98bRI5j3+V48ht4+PIZE2p7+zkyiRiairuAu6LhW6xu6ZDIpyeT8MbQoV1J0Pu0YrRVrMJIJbPeN61Fb1aEx8fQEruVfq9hjxcws1pJ7lAs9OcxZN4vHmU1g6/pJ9gfBeUpEpNPCGnfPweMOQzzvQoo8kyinE47ddx2ffAmo7ZJFHA82bcAxcW6uBPHjMR4Qpyaw7YzBcx8dHVn8d6sdiMjz1jYuJZuvvFqSyfl5szqHfXh0HV63DZvx/EVEUm4R4skTeL61CK9T2+U+j6+PzWB/FRGpzOJ9S/kM7mPsOI6pFZJcpDah3sL1MN5z6glrn2tuxXu4665+A8Slx/4G4okSXntTxfNi/ZWISJsMP8IO5qhP+mHPJ30yDWaJhC1SSyewb7XI26q17PqEMfciL4T+oqEoiqIoiqIoStfRBw1FURRFURRFUbqOPmgoiqIoiqIoitJ19EFDURRFURRFUZSuc1FicMdxxFkQbDok3PRIpMixiC32ZtM5NvSzDwDDRMI2dfI9FGSxRtghUyOHjN3OayIYxIh06G8OmRy16Dx7+1EMd81110Fcb9tCejb6SpC41rjYODky6eotoiA9aes5xaNt+kk8j9GRocV/12q2EP+S43giC4Iny7CPxd+JuNTGz5gmLRxAomnha03XwDJfE7ESzpCpW6oHRa5DCRJsch/ooFItn7GFkH4dt1mYw89s8/FaPdpBE540icJ+dniTtY//MIKGWFsKaIYWcVvW0XDITaKhn/Hs6+PQggemziq9ZecerMJiBCJSKPQsGh3x2MDjWSj2WNGiRRt6yFQunSZjTlpUY+/+5yCemCpa+7ht6DaIp6bxWmSyOG42aJGD4ydRLLn7MjTJuvKKl1v73LhlO8SPPvYdiMcnULRZraDI0HN5HLYHqA7lbbNBC2TQ9ZieRuFyoQ9FyXNztmFalUSZHhm9tYN5QWYY2mLhlcDx0+IsjNMN6mNOiONRJmsL6nto/Mhk8D2Oi23Ii4zMC5CXqNqegDI7RwuqJMmwlgS/UQevQ5LMZ0dHcXEUNyY3JibR2K2vFxfZYJO2TUOjENdreAyNtm3Yl8xh/kRkkJZysW0GaJ7fdwBNBKfP2MZvU1N4HMWBIsT5Zdc04V+4YVq3mJiZXrz3SEfYZzvTONdVcnYbtmj6YlO/ZgLnkRQtuHHo0FGIMwV7Pnzm8acgLqYwf9bk8F5o4vhhiIOBZyHuL2A+O9MHrH3u+9Y0xI3+yyBOOjTeVUsQVys0FiXsxXraEbZNMoXviWj+DAMyvkz10ev2YhGGTCB9uj9uhktjsFExuKIoiqIoiqIoq4k+aCiKoiiKoiiK0nX0QUNRFEVRFEVRlK5zURoNY8xiXXpI5lRcr+7FGKaxvoF1HlYtp2FzKzJiKds1igUysKpSLVy9ieYtA31oKhNXG7ycVox+ot7E+rqRdVgDONCLZnmJLJoLJTN4GSKxtSoRucNFHXyPT/qKKKIaPxdf7yliDauIrSXxyfAlvaxcL1yNEvkoWjJ6I02KIbOaWDM9S/9A+UMmcqaJNeGG3RrTtuGN42COmxbnPJlSkvDIodrgsIq1n30xuqS7MljnH44UIT5cnoE4EKzt3rUWTQR/dggNikREkhm84JaRGfULE1H9pkcGWR07xx3Wt5A+xVn2Eeci6kO7iYmis3591njGGrNUjCFShmqOeQxkXJ/yg15vduzx6KnvPwPxqTE0slszjDXLXhKPaf9hNBTtcO1/HsczkRgNGYnAKhUcd1NUhy80Xs2S6ZuIbQJLQ4D0FHD+SJAh58xMCbcXM5aLweNu0hggC/17tTQamXxBsun585oq47xTncN5pbeIuigRkb5iEeJCD84Dp0+jloa1C7kMtunG9bg9EZHEJBm9BthWzTpu0/h43PkcXYMG6i/SGTv/0kkcV8sV1OdwDXyyg8foOjj2p2JuA0K6/2DzzFEad2fLOH6VazhoVuv2JJomPd0aMp2sVZfaivUyK0F1enxRC5Wj6zBdwbmr1sJ5RkRky2Wo5TpzBuemuSq22UgG57tTY2MQX3El6sdEREbW4v1XUMOBYq6Kx9VpYM6bWdTSkAe01GtoeCoiMj0+DvHUHLrJ1klPFVAfiATzL+B7ExFJZTEpf/J1N0Fc6MWx6onvotZkahz36QvqlEREWiFpSkkCk152YxWGcTdZ8egvGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF3nojQaHSPSXqjFbZNGo9nA+jz2zBAR6VBNs081jryGPBckt2ifXAYuIjJLdbh7Dz0J8Zq1RYgHB7Be2VCNbqlE9XwB1pOKiJgIa+OGR9ZBfMXLrob4+ef3QPzM95+AeNfl9jr1vM58xJoYev8ErVs/MIDalUKPXetfojrqhGB7+8vXYF+VGnlHziaFYW0DF2xzLCKmTRoMWgTeoTWk3Tx5haRYBxNTp23ouMjPw6Gcd6jW26SwNtOlGnxTm7B26flYx+v3FCHe0Yc5/n4ffTL8POaCG8X4uDTxOF0f+6pxqV4zh8cgpEVwYjxIDH3G4e9BqsvqecOVX0NeRKTebCzqz3i86iUtls8mPiJSrZzbi4XHzR7yw4kC9jWwtS4T05gjp85g/XByP+b1zBSOFWsGcZ9Hj2NNcrtttz3rl/oGsE56zRqMJ2l8SiVRs9HbW7T2Uaaa93aTdUHYf0PB46yRd0cnsteRZ81CoQfbqr2goQpi1qBfCa5+xSskn5s/pt6ho/Dageeeh7gY47mTS+H5lEs4n9UbNK6TdiZJPhvtyO7HOQ+3kcphTtdJB5lwUWNWyOI+DOknfNc27/DTVOPewvcECdZH4OtN8gFKpOz5o9rCeb6ngP2k1cHPjI1hjh85ehrigaw9PrxsN+rjPDqO05NLfbvTWfkc7E2kJLEwp1WmcFwZGCLtjGOf39wctiEPX6P9qBfsy2Ebzzo4BoyfQM2GiMjQMGqTvv8E9otKFY8hm8B+spby0zh4X9Ro2HNwi3ydMm3SYPD9Mmtuaf6Mu7cIyO+Ifc5u/T9uhPiqW7Atn3oc/UK+8VXUkYiI1MjaxUQ4XnjL47gb8BdAf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOhfno7HwfyIikeGabao9j1kfPuGe26MiCLHmkPeR8LIQ+ym7Ruz5Z74LcSGH9XfrR7E+vd7Aej2Pnr2MwTibxXp4EZFmA9fszuWwVjGM8Lw3btoG8feefBzix775qLWPm2+6GWJepz6kes0Tx3Et/JG1uGZyNottKSJyktaobtVJd+MttWUYrI6Pge0kME9E9drSsGvXpUa+GB5tqw+1Ck4C14xnYtOZNRi0DUOvG8pxyZC/AHkWOA0qohQRQ2tuR3RgHtW/++RXE3l4DCF7koiIS/2CfSyiFNa2OxnyaWnQ2vkxX3E4VP8tvagtkfRSfWicD8dK4Hu+eN78wbNvxtn15c8SxNQosyaDx0n25pibw3YT+ryRGL2Ewb955LEzMY1r16epbr9Sx37iTqGXix8ztk/N4DZPjWMds11Njn9Zuw7riSsVWwsXkD6F65g7pB1J5zHPC+QhUanZXh2+j+2bTOE1zOfn6787nUBEDlmfv9RkBtdKNj8/dt+4eSu8NjiItelH9+21Pl+u4pjeoPSp1PEPXBeedPG6eTFXtr8X862vD+fMdhtfH+jD4y7NkAdGlXLB2HNPgrra6FAfxOkUbsN18b6g0cDzqFEfEBFxPOzfzRa21ZHDByCukCYoTTX1+YI9PqQymH/1Jl6voL10XKuhE+o0OmI688eYJC2Nn8brsmXrBuvzJydwLEnncG7qoRxmHUx/Btv05GHUHYiIbH3VDojzCbwXMh7OTdkCHvdIFl9njzJp2mNTtcn6YRyreBsu9ZsOzWdhjAaWdY0Pfx39kra9bCfEl12NniU3/nu8l+hZa/vRPPwV8mDahxplr7X0mVA1GoqiKIqiKIqirCb6oKEoiqIoiqIoStfRBw1FURRFURRFUbrORWk0KuVZiYL5WrJUCmvrHKrXCsOYqlyqqQ06514Ln5faz5BfwIGDqG0QEZkrYc3elZtvgzghWH/n+XhMjnNub48wsmvDp2exbn5ocBhiQ+vpZ/K4bviNN78S4mPH7PWNQ1rzPZfEtqjTuuCnaZ36jZs34zEODVn7GBjDdbEnqZZ77dqNi/92/YtKne7guPP/iYhDfhUyQ9qFqu0FIUPY7m4vtiF7AZzd1yIe6RS8mOd0/hNv0no/aTY8qsFPkWYoQRoOEXECzEmX1rbnpe4jqu2lsmvx/BhtAccksnBJe8K+GVZbdmI8SGh9fMPtu2wbhre3QjiuK86C1wVrMsTDOtxO3DmyL0HSpZfJV4Xakb05Wq0YzxO6WinfPefrmRzqtdIp1DaUK9i3Cnk7B/m4gzYel0NTzdAo6m8aDbz2ceflkqaqHeBnEqQ9Iosa8Xw87kKRdEQiYhLYl8o11AtIY34fq+Wj8Q9f/oZk0vPn8epXXwuvrVmL/k3fe9yeH5ttbLMNW3dBnAvxOu3f+xzEPWnM8Yw9VEg2h38cHMBxt0PeQJk0XreZKczPTkC5Zey293zcxvAA1vob0prM0XVNkndCNebeJJfFmvbS+BmIyyWcL3n4yudxvknF9KMy+5FRDvcv80hqr4KPRnY4seij4adpDkjidcv1xGj9psivhDSvZfI/6V8zSDH22T377fux8hxeu3XrN0N88hTqRFoO7jNH57Umi9rNnpQtzixVShD7Dms2sC3YL8lz2F/J2oVEHfzjzBiOy5/9ky9C/PP/6acgvuHWKyG+6SbUcIiIbCb98Bf/5msQP/nwki6NNdTnQn/RUBRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6ToXVWg/PXlaGrX5et5CAesuJyZw3XQ3Zq31Yh+ubT09jbVyhjQc2RzWxuWHsZa4Rmvzi4ikUljzl8ngcZro3EXzjoM1f0GIcT1mfe25Ktb4rd2Axxla3hzsQYL1pdu22bVzrHlpUC1ns4nHtWHjZohTVGdYrds10Bs2Y30eFwpOLtN91Gv2WtKXHNed/09EJMBjc9nzYhTPV0RE8qi3YR2B41IyuFyAzGKHmEJKLq5k3wOq3XR4E+SjwGtnO+z9ISJCPghC6707pN/xaiXaJulEItqeiDjkzeFQxzFcU0/HIBnyn4mpLzbsjRHwuS6Lg9Xx0XBdI647f00KRRxbhPxHytO4BrmIiBti/XCrRd5BEW6DZR4O5Vycnw3r56pVHBva5DkzN4d+Em3SpbFfxWzZ9p/IZXDMC5p4nuy9MTuFNfLsaWPpX0SkSZ4COerPCRoDynN43uOnUbdGU4OIiOSHKM9TeByt2vx5sd5wpXju8acluVAjP5TGfhu1sWb71NHT1ue3XHEdxIMj6HUwVcJxfWISdQfFTRshPluvv5yQ+mYygWPx1CT2ixNzU7hNH69rrUF6Hx5bRCRo4hjnCm6TBTs58iuqtzH/4jwC6iXcx8Qk5nBpFs8rlcbj3LAZtZu9g0VrH2ET2y6bw3FzZnrpnqcdpwG7xKTXRJJMze+3SV4P+X7UxQS+fXysuyv04Gc8uk85OYl61U3rULOxYQfqkkRE9h87AvEVl6O/xNES+mpkyWvNz7AOCa/jtvVrrX2O78F72ZB0SBHNbayD9Ggf6STdq8wfGUY0ZlYpH//qT78EcT6F93eXvfzl1h4Ge/Ae/U0/i4Pk7PhfLf47CEIZP4I6pRdCf9FQFEVRFEVRFKXr6IOGoiiKoiiKoihdRx80FEVRFEVRFEXpOvqgoSiKoiiKoihK17koMXgmmZBMcl4o06iiILCQJQEhuyWJSIcEW3kSZGXSKEJlYyk/i9sc3WSLpqvTKBBP5dCYLnBI5BWhaKdWR/Hb2KkxiNevs/d5BYlqEikURhqHxbb4+YCEZ25kC2XZ4IXFkoUCGtlcdvnluE8S77LAU0QkT6J0n4Rby43gkmSOtRKYIBIj0eK/ATKSsmKxTeeE2sCh525HyDyNL1ycYQ2LwdlYjkITnceoh8WWcSaBHl0Lyjc+L0MLB0QtFKo5A/a1NSQwFjLNYlNKa5GFFI4PJmeLLYUWd3DIFHC5eZ1hJ6sVYrA/J/6CkK/eROFsvUUC6JjRNZdlUzlsh2oT2zUMsSFdanePjRJFpMMCcUqqXAavhUs516jidXDp2nbathDfCUnkmeP5ANuGzZ6adN4xSx5YY1axiAZq5XIJYntdBtxqq2GPs7kOHrdn8HoFrflrHvL4s0JsHx2S9IJhWHn8JLw2OYkLsgQduxXLFZyDp2ZQwHxqDAXkPolUI1qUpBbThq6Hf9u3/wTEVVo8JaB8Hein+ZLHr5imT6Vxzi3NYd9M03xV6BuFeKZGCyLEfAfr0hi4+/KrIX75ldfjPnrwfmZkFIW2qZy96IZQf49aeLKZU0vXuNVui8hT9jYuIa1Oe9Gc06XxmQXMsw3b9LAaUpsMbIV4eHQNxP/y5T0Q99OiIlddjUJvEZGHH3oYYj+Nx7F993qIz+zBRSLyJMDPtfA8rxy1xeBjMyiKPkYLHTmGJgMai0IaqzqBvVhPgvThHUMCc+oYvEDLH/7hRyFeM4oLO4iIjK7HfvSm//MWiF/5Y0umf61mW7791WesbcShv2goiqIoiqIoitJ19EFDURRFURRFUZSuow8aiqIoiqIoiqJ0nYvSaBhxF+slParn5/rZTts2tos6WIuZo1q4DtW9snahVsN6Ute3n5MKZBrTaGE9aCRYP5oik6fKHJpCiWC9aCJh1/6nsngehmoXLVMtq9YfC/Ti9mHoPazR4PYPDZvRUVvFmB5FpA1xSV+QTC61RRjY9ZeXmqBUlcCbbxvXp9r1JJ9PjJleirQH3CZc40ht7vJ1izXtIs0FXSc2uhPSgQgbD6ZJGxGzT8N6KDYSTGDdpTO0CV+numth40IRkSQeh8PSgAb2M9OmGtMMGjE5vp3j/L2HwzqQ+lLdtbsK+ScictmOzZJc0KlVyUisTvHpMdvMyER43LU6jjdtOq10EscW1yUDOTZKFHtsSFDMl84hM72A6oN5HMil7dpyn3UcZOblOHgt2agwkcBthqGt4eH5grUjdW5LzhEyyRopjlj7qExjHkuC9AILZdHGliasCLlcJJkFw7RMBq9rvq8IcdXwXCZykjSHjQ7NKzQmDrEJW4jzeppNUMUa0WRmrgSxMdj32y281g0ylEySvovvPURE2mQAmiTNRm8/muXletHobX0Oz3v9Lhp3RaSnB3WQWzZugTiiOXd2Bk0DWx3UjcTNHuwTuHYNHueO3UvXq1avy/3/7XMxW7l0NOu+hMF83iVcPNjyLJ5fKmOPExma344e2gvxs09/G+KI+vT0Mczfwct2WfvYuh5NKJ0Ac2PXOpz/Sk+MQ9wpoUatZxC319eLeSAiMjKARoLlJrbNFJmHujTHJniciZmCO2T2u3HzZoh/5k2vhXi2uQ/i6doBPMa5o9Y+zqBcRf7q8/sh3rZxqS24354L/UVDURRFURRFUZSuow8aiqIoiqIoiqJ0HX3QUBRFURRFURSl61yURqMdGPGD+RrBgOpf2edBXHvTXIfGOoIGre+foJraY4eOQzxDNZAiIhvWY/3dwQOzEEcR7rOnpx/i9fT5NVh6F+s/0WmQD4bLfgyIR6/zOuEh18zH/I3jFK3xzdoT9jXhtctFbN8M1o4sP/e4drjUVKrVRW2JtU5/DWs5nQLW6IrYlhasUzHsScAL8bPvRsyC7uZ8ug9aMNshnwyOjUdaBhOjTaBraXlzkMeB01vEz5PexRIKiIjDug2uoefzbpBGi7UEMSYThuqq+byc+lLtbGgZjqwMg8X+RR+DfBbbaWIK106/8vIrrM9PTKNPgaHY8TCPW3XSvhjM0bh+zJoLrrsXh/KD8uXs+S1+nvpJsYD+FSIinQ62Rb2F52E8PCaPNDq+z1o4Oz/6+tCHoFrFmvBt29DjqB3iMbDPSTJpjxHTk+ijxL41zsKcZcI4p49Lz9jkmKQW9Gg++RZ0AmyzWfIVmQevdWUGz3doGP0l8nlsowTViYeRPVZU6LqwdsYhbU2O/LRY0xi0ca5rNHD7IiKlKo4vGzZh7f7WXddBXOhFLwQ3iRqy6RLeN4iITM9gAXudfCIaNRzzjp5APUGugBqjyWn0PRERcSJsm74+1GhUl81z9YatwbnUjA5vlOSC1rFWw/uxZpuuS2R/j12bwfGsVK5AXCjgdYgi9IoImtg+szP2ddq8Db05njnwPMQ9G1Gv87JXY26MHT4GcWYY8/NMw94nDyXb1qH+q1FDL5km+Qp1SNPhxMyPrO9MeNiXkxncZiFF9xp5vB59I/b4F2xBXc1Jun/+1sNLmpqL8RLSXzQURVEURVEURek6+qChKIqiKIqiKErXuaDSqbPLfDaWLWF5vtKpKKb8x6XSFI/iJpVOdejn9Ab9VMjvFxFpUKkBL5nLpVO+jz+L1aq4tBlVIcSWDFmlUlyqcJ738zKq4tj74Pbk0ikuXUgk8CdHu3Qq7vpw2Q+9vqx8plabbyfr2C8BZ/dRWbb2n6GfHh1qDydm+VMn4NIoXs6WF/6kczM/SOkUh/RzJi1yyAUZhv8SxpRO0bW3S6doqeMOlTFRn+DtiVxA6VQH800CinmfMeuDGn5P8MLXdG6hHVYi/5bvp7Ws/KZFpThtWr7b9+x27NB7AhqfwvDcMedD3HhkbcOlHHM4KXn84S2ef+wIqP8F1nHTLiNefpuuNQ+8ItLhkpqAx0B8vUPLdfP7XdcuO+O2Y8423dn3rXj+LSsjCoTbAz/DS74ubAmikNZTbXHZJC+bTnOTcewcb7V5m3RtXVpSl+4DfFqAuUnb49wSsftes4XjD5dvuQm8T3A7mG91uo8Qse8/avSeZh3vR/j+xPX5fsdemtoxvGQz7qO+7B7s7PGs5BzcXjbmdei68FVxY+Yq/kxAOcqvd+j1tkO51bL3we3K22zSMuTNJuYK94FG69yvi4h0Ah7/8PXoPEvnW9cw5poa7ovU4fm8W1TW2OZ7SCdmHOf5ifru8nKps/++kPxzzAW86+TJk7Jhw4bzvU15CXLixAlZv379Jd2H5p/yQqxE/oloDirxaP4pq43OwcpqciH5d0EPGlEUydjYmBQKhdhvmpSXHsYYqVQqsnbtWnshgC6j+acwK5l/IpqDCqL5p6w2Ogcrq8nF5N8FPWgoiqIoiqIoiqJcDCoGVxRFURRFURSl6+iDhqIoiqIoiqIoXUcfNBRFURRFURRF6Tr6oKEoiqIoiqIoStfRB41l3HbbbfKe97xntQ9DURRlxTDGyJ133in9/f3iOI489dRTq31IyksIzT9lNTnffd/mzZvlE5/4xEVv97777pOrr776Bz6uHyUuyLBPUZQXP/fdd5/83d/9nU7UykXx5S9/WR588EH5+te/Llu3bpXBwcHVPiTlJYTmn/Ji5vHHH5dcLrfah/FDjT5orCDtdluSyeRqH4aiKMoihw4dktHRUXnlK18Z+7qOW8qlRPNPeTEzNDR0ztc7nY4kEokVOpofTl6ypVO1Wk3e+ta3Sj6fl9HRUbn//vvh9VarJb/+678u69atk1wuJzfeeKN8/etfh/d885vflFe/+tWSyWRkw4YN8iu/8itSq9UWX9+8ebP8zu/8jrz1rW+Vnp4eufPOO1fi1JQfYqIokt///d+X7du3SyqVko0bN8rv/d7viYjIvffeKzt37pRsNitbt26VD37wg9LpdERE5MEHH5Tf/u3flu9///viOI44jiMPPvjgKp6J8sPA7bffLu9+97vl+PHj4jiObN68WW677Ta566675D3veY8MDg7Ka1/7WhEReeihh+SGG26QVColo6Oj8v73v1+CIFjcVqVSkbe85S2Sy+VkdHRUHnjgAS1HVc6J5p/yYiAIArnrrrukt7dXBgcH5YMf/KCctZjj0inHceRP/uRP5I1vfKPkcrnF+fmjH/2oDA8PS6FQkDvuuEOazeZqnMqLE/MS5Z3vfKfZuHGj+cpXvmKefvpp84Y3vMEUCgVz9913G2OM+aVf+iXzyle+0nzjG98wBw8eNB/72MdMKpUy+/fvN8YYc/DgQZPL5cwDDzxg9u/fbx555BFzzTXXmNtvv31xH5s2bTI9PT3m4x//uDl48KA5ePDgapyq8kPEPffcY/r6+syDDz5oDh48aB5++GHzZ3/2Z8YYY37nd37HPPLII+bIkSPmi1/8ohkeHjb/9b/+V2OMMfV63fzar/2aufzyy834+LgZHx839Xp9NU9F+SGgVCqZj3zkI2b9+vVmfHzcTExMmFtvvdXk83nzvve9z+zdu9fs3bvXnDx50mSzWfOud73L7Nmzx3zhC18wg4OD5sMf/vDitn7pl37JbNq0yXzlK18xzzzzjPnZn/1ZGFMVhdH8U1abs/l29913m71795q/+Iu/MNls1vzpn/6pMWb+Pu6BBx5YfL+ImDVr1pg///M/N4cOHTLHjh0zn//8500qlTL/7b/9N7N3717zgQ98wBQKBXPVVVetzkm9yHhJPmhUKhWTTCbNX//1Xy/+bXp62mQyGXP33XebY8eOGc/zzKlTp+Bzr3nNa8xv/MZvGGOMueOOO8ydd94Jrz/88MPGdV3TaDSMMfMJ+qY3vekSn43yo8Lc3JxJpVKLDxbn42Mf+5i59tprF+MPf/jDOrApF80DDzxgNm3atBjfeuut5pprroH3/OZv/qbZtWuXiaJo8W9//Md/bPL5vAnD0MzNzZlEImH+5m/+ZvH1Uqlkstms3ugp50TzT1lNbr31VrN7927IrXvvvdfs3r3bGBP/oPGe97wHtnHzzTebd73rXfC3G2+8UefjBV6SGo1Dhw5Ju92WG2+8cfFv/f39smvXLhEReeaZZyQMQ9m5cyd8rtVqycDAgIiIfP/735enn35a/vIv/3LxdWOMRFEkR44ckd27d4uIyHXXXXepT0f5EWHPnj3SarXkNa95Tezrn//85+VTn/qUHDp0SKrVqgRBID09PSt8lMpLgWuvvRbiPXv2yM033yyO4yz+7ZZbbpFqtSonT56U2dlZ6XQ6csMNNyy+3tvbuzimKsrFoPmnrCQ33XQT5NbNN98s999/v4RhGPt+vq/bs2ePvOMd74C/3XzzzfK1r32t+wf7Q8hL8kHjfFSrVfE8T773ve+J53nwWj6fX3zPL//yL8uv/MqvWJ/fuHHj4r91tQLlQslkMi/42mOPPSZvectb5Ld/+7flta99rfT29srnPvc5S1ukKN1Axy1lNdH8U17MaH5eHC9JMfi2bdskkUjIt7/97cW/zc7Oyv79+0VE5JprrpEwDGViYkK2b98O/42MjIiIyCte8Qp5/vnnrde3b9+uK2QoPxA7duyQTCYjX/3qV63XHn30Udm0aZN84AMfkOuuu0527Nghx44dg/ckk8kX/AZGUf4t7N69Wx577LFFgaSIyCOPPCKFQkHWr18vW7dulUQiIY8//vji6+VyeXFMVZR/C5p/yqVk+b2giMi3vvUt2bFjh/VF8wuxe/fu2G0o87wkHzTy+bzccccd8r73vU/+9V//VZ599lm5/fbbxXXnm2Pnzp3ylre8Rd761rfK3/7t38qRI0fkO9/5jvyX//Jf5B/+4R9EZH4FoEcffVTuuusueeqpp+TAgQPy93//93LXXXet5qkpP8Sk02m599575Z577pHPfvazcujQIfnWt74l//2//3fZsWOHHD9+XD73uc/JoUOH5FOf+pR84QtfgM9v3rxZjhw5Ik899ZRMTU1Jq9VapTNRftR417veJSdOnJB3v/vdsnfvXvn7v/97+fCHPyzvfe97xXVdKRQK8ra3vU3e9773yde+9jV57rnn5I477hDXdaEkQVF+EDT/lEvJ8ePH5b3vfa/s27dP/uf//J/yh3/4h3L33Xdf8Ofvvvtu+fM//3P59Kc/Lfv375cPf/jD8txzz13CI/7h4iVbOvWxj31MqtWq/PRP/7QUCgX5tV/7NSmXy4uvf/rTn5bf/d3flV/7tV+TU6dOyeDgoNx0003yhje8QURErrzySnnooYfkAx/4gLz61a8WY4xs27ZN3vzmN6/WKSk/Anzwgx8U3/flQx/6kIyNjcno6Ki84x3vkDvuuEN+9Vd/Ve666y5ptVry+te/Xj74wQ/Kfffdt/jZn/u5n5O//du/lR//8R+XUqkkn/70p+X2229ftXNRfnRYt26d/OM//qO8733vk6uuukr6+/vljjvukN/6rd9afM8f/MEfyDve8Q55wxveID09PXLPPffIiRMnJJ1Or+KRKz8KaP4pl5K3vvWt0mg05IYbbhDP8+Tuu+++KDuCN7/5zXLo0CG55557pNlsys/93M/JO9/5Tvnnf/7nS3jUPzw4ZvlvkYqiKIrSBWq1mqxbt07uv/9+ueOOO1b7cJSXGJp/ivLi4CX7i4aiKIrSPZ588knZu3ev3HDDDVIul+UjH/mIiIj8zM/8zCofmfJSQPNPUV6c6IOGoiiK0hU+/vGPy759+ySZTMq1114rDz/8sAwODq72YSkvETT/FOXFh5ZOKYqiKIqiKIrSdV6Sq04piqIoiqIoinJp0QcNRVEURVEURVG6jj5oKIqiKIqiKIrSdfRBQ1EURVEURVGUrqMPGoqiKIqiKIqidB190FAURVEURVEUpevog4aiKIqiKIqiKF1HHzQURVEURVEURek6/z++hD94IzDZKAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',\n", " 'dog', 'frog', 'horse', 'ship', 'truck']\n", "\n", "plt.figure(figsize=(10,10))\n", "for i in range(25):\n", " plt.subplot(5,5,i+1)\n", " plt.xticks([])\n", " plt.yticks([])\n", " plt.grid(False)\n", " plt.imshow(train_images[i])\n", " # The CIFAR labels happen to be arrays, \n", " # which is why you need the extra index\n", " plt.xlabel(class_names[train_labels[i][0]])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "Oewp-wYg31t9" }, "source": [ "### Create the convolutional base" ] }, { "cell_type": "markdown", "metadata": { "id": "3hQvqXpNyN3x" }, "source": [ "The 6 lines of code below define the convolutional base using a common pattern: a stack of [Conv2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D) and [MaxPooling2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D) layers.\n", "\n", "As input, a CNN takes tensors of shape (image_height, image_width, color_channels), ignoring the batch size. If you are new to these dimensions, color_channels refers to (R,G,B). In this example, you will configure your CNN to process inputs of shape (32, 32, 3), which is the format of CIFAR images. You can do this by passing the argument `input_shape` to your first layer.\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "L9YmGQBQPrdn" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/pewhite/ml/env-tf/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n", "I0000 00:00:1737653697.213974 2370 gpu_device.cc:2022] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 2256 MB memory: -> device: 0, name: NVIDIA T500, pci bus id: 0000:01:00.0, compute capability: 7.5\n" ] } ], "source": [ "model = models.Sequential()\n", "model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Conv2D(64, (3, 3), activation='relu'))\n", "model.add(layers.MaxPooling2D((2, 2)))\n", "model.add(layers.Conv2D(64, (3, 3), activation='relu'))" ] }, { "cell_type": "markdown", "metadata": { "id": "lvDVFkg-2DPm" }, "source": [ "Let's display the architecture of your model so far:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "8-C4XBg4UTJy" }, "outputs": [ { "data": { "text/html": [ "
Model: \"sequential\"\n",
       "
\n" ], "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
       "│ conv2d (Conv2D)                 │ (None, 30, 30, 32)     │           896 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d (MaxPooling2D)    │ (None, 15, 15, 32)     │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_1 (Conv2D)               │ (None, 13, 13, 64)     │        18,496 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d_1 (MaxPooling2D)  │ (None, 6, 6, 64)       │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_2 (Conv2D)               │ (None, 4, 4, 64)       │        36,928 │\n",
       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
       "
\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Total params: 56,320 (220.00 KB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m56,320\u001b[0m (220.00 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Trainable params: 56,320 (220.00 KB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m56,320\u001b[0m (220.00 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "_j-AXYeZ2GO5" }, "source": [ "Above, you can see that the output of every Conv2D and MaxPooling2D layer is a 3D tensor of shape (height, width, channels). The width and height dimensions tend to shrink as you go deeper in the network. The number of output channels for each Conv2D layer is controlled by the first argument (e.g., 32 or 64). Typically, as the width and height shrink, you can afford (computationally) to add more output channels in each Conv2D layer." ] }, { "cell_type": "markdown", "metadata": { "id": "_v8sVOtG37bT" }, "source": [ "### Add Dense layers on top\n", "\n", "To complete the model, you will feed the last output tensor from the convolutional base (of shape (4, 4, 64)) into one or more Dense layers to perform classification. Dense layers take vectors as input (which are 1D), while the current output is a 3D tensor. First, you will flatten (or unroll) the 3D output to 1D, then add one or more Dense layers on top. CIFAR has 10 output classes, so you use a final Dense layer with 10 outputs." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "mRs95d6LUVEi" }, "outputs": [], "source": [ "model.add(layers.Flatten())\n", "model.add(layers.Dense(64, activation='relu'))\n", "model.add(layers.Dense(10))" ] }, { "cell_type": "markdown", "metadata": { "id": "ipGiQMcR4Gtq" }, "source": [ "Here's the complete architecture of your model:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "8Yu_m-TZUWGX" }, "outputs": [ { "data": { "text/html": [ "
Model: \"sequential\"\n",
       "
\n" ], "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
       "│ conv2d (Conv2D)                 │ (None, 30, 30, 32)     │           896 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d (MaxPooling2D)    │ (None, 15, 15, 32)     │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_1 (Conv2D)               │ (None, 13, 13, 64)     │        18,496 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ max_pooling2d_1 (MaxPooling2D)  │ (None, 6, 6, 64)       │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ conv2d_2 (Conv2D)               │ (None, 4, 4, 64)       │        36,928 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ flatten (Flatten)               │ (None, 1024)           │             0 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dense (Dense)                   │ (None, 64)             │        65,600 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dense_1 (Dense)                 │ (None, 10)             │           650 │\n",
       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
       "
\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m65,600\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m650\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Total params: 122,570 (478.79 KB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m122,570\u001b[0m (478.79 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Trainable params: 122,570 (478.79 KB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m122,570\u001b[0m (478.79 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "xNKXi-Gy3RO-" }, "source": [ "The network summary shows that (4, 4, 64) outputs were flattened into vectors of shape (1024) before going through two Dense layers." ] }, { "cell_type": "markdown", "metadata": { "id": "P3odqfHP4M67" }, "source": [ "### Compile and train the model" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "MdDzI75PUXrG" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1737653739.682939 2427 service.cc:148] XLA service 0x7f1bf401ab50 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n", "I0000 00:00:1737653739.682980 2427 service.cc:156] StreamExecutor device (0): NVIDIA T500, Compute Capability 7.5\n", "2025-01-23 12:35:39.701052: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n", "I0000 00:00:1737653739.809531 2427 cuda_dnn.cc:529] Loaded cuDNN version 90300\n", "2025-01-23 12:35:40.005277: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[32,32,30,30]{3,2,1,0}, u8[0]{0}) custom-call(f32[32,3,32,32]{3,2,1,0}, f32[32,3,3,3]{3,2,1,0}, f32[32]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kNone\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:40.118739: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[32,64,13,13]{3,2,1,0}, u8[0]{0}) custom-call(f32[32,32,15,15]{3,2,1,0}, f32[64,32,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kNone\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:40.158548: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[32,64,4,4]{3,2,1,0}, u8[0]{0}) custom-call(f32[32,64,6,6]{3,2,1,0}, f32[64,64,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kNone\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:41.140617: W external/local_xla/xla/service/gpu/nvptx_compiler.cc:930] The NVIDIA driver's CUDA version is 12.4 which is older than the PTX compiler version 12.5.82. Because the driver is older than the PTX compiler version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m 32/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m7s\u001b[0m 5ms/step - accuracy: 0.1104 - loss: 2.3044 " ] }, { "name": "stderr", "output_type": "stream", "text": [ "I0000 00:00:1737653741.651519 2427 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m1560/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.3550 - loss: 1.7457" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2025-01-23 12:35:49.155921: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[16,32,30,30]{3,2,1,0}, u8[0]{0}) custom-call(f32[16,3,32,32]{3,2,1,0}, f32[32,3,3,3]{3,2,1,0}, f32[32]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kNone\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:49.246541: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[16,64,13,13]{3,2,1,0}, u8[0]{0}) custom-call(f32[16,32,15,15]{3,2,1,0}, f32[64,32,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kNone\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:49.270534: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[16,64,4,4]{3,2,1,0}, u8[0]{0}) custom-call(f32[16,64,6,6]{3,2,1,0}, f32[64,64,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kNone\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.3552 - loss: 1.7452" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2025-01-23 12:35:51.106107: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[32,32,30,30]{3,2,1,0}, u8[0]{0}) custom-call(f32[32,3,32,32]{3,2,1,0}, f32[32,3,3,3]{3,2,1,0}, f32[32]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kRelu\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:51.208405: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[32,64,13,13]{3,2,1,0}, u8[0]{0}) custom-call(f32[32,32,15,15]{3,2,1,0}, f32[64,32,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kRelu\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:51.248859: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[32,64,4,4]{3,2,1,0}, u8[0]{0}) custom-call(f32[32,64,6,6]{3,2,1,0}, f32[64,64,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kRelu\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:52.236116: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[16,32,30,30]{3,2,1,0}, u8[0]{0}) custom-call(f32[16,3,32,32]{3,2,1,0}, f32[32,3,3,3]{3,2,1,0}, f32[32]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kRelu\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:52.329444: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[16,64,13,13]{3,2,1,0}, u8[0]{0}) custom-call(f32[16,32,15,15]{3,2,1,0}, f32[64,32,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kRelu\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n", "2025-01-23 12:35:52.353749: I external/local_xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc:557] Omitted potentially buggy algorithm eng14{k25=0} for conv (f32[16,64,4,4]{3,2,1,0}, u8[0]{0}) custom-call(f32[16,64,6,6]{3,2,1,0}, f32[64,64,3,3]{3,2,1,0}, f32[64]{0}), window={size=3x3}, dim_labels=bf01_oi01->bf01, custom_call_target=\"__cudnn$convBiasActivationForward\", backend_config={\"cudnn_conv_backend_config\":{\"activation_mode\":\"kRelu\",\"conv_result_scale\":1,\"leakyrelu_alpha\":0,\"side_input_scale\":0},\"force_earliest_schedule\":false,\"operation_queue_id\":\"0\",\"wait_on_operation_queues\":[]}\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m14s\u001b[0m 7ms/step - accuracy: 0.3553 - loss: 1.7451 - val_accuracy: 0.5640 - val_loss: 1.2251\n", "Epoch 2/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.5764 - loss: 1.1968 - val_accuracy: 0.6042 - val_loss: 1.1134\n", "Epoch 3/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.6396 - loss: 1.0214 - val_accuracy: 0.6427 - val_loss: 1.0079\n", "Epoch 4/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.6762 - loss: 0.9261 - val_accuracy: 0.6565 - val_loss: 0.9884\n", "Epoch 5/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.7006 - loss: 0.8489 - val_accuracy: 0.6738 - val_loss: 0.9376\n", "Epoch 6/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.7233 - loss: 0.7836 - val_accuracy: 0.7038 - val_loss: 0.8575\n", "Epoch 7/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.7430 - loss: 0.7248 - val_accuracy: 0.6921 - val_loss: 0.8970\n", "Epoch 8/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 5ms/step - accuracy: 0.7560 - loss: 0.6907 - val_accuracy: 0.7100 - val_loss: 0.8504\n", "Epoch 9/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 6ms/step - accuracy: 0.7725 - loss: 0.6434 - val_accuracy: 0.7131 - val_loss: 0.8487\n", "Epoch 10/10\n", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 5ms/step - accuracy: 0.7850 - loss: 0.6065 - val_accuracy: 0.7122 - val_loss: 0.8709\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 70/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.1470 - loss: 2.2585" ] }, { "name": "stderr", "output_type": "stream", "text": [ "I0000 00:00:1723778388.120198 135108 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 94/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.1576 - loss: 2.2336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 118/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.1661 - loss: 2.2111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 143/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.1747 - loss: 2.1888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 167/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.1824 - loss: 2.1690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 192/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.1899 - loss: 2.1491" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 217/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.1966 - loss: 2.1313" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 241/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2027 - loss: 2.1155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 266/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2089 - loss: 2.0999" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 291/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2148 - loss: 2.0849" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 316/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2206 - loss: 2.0704" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 341/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2260 - loss: 2.0564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 366/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2313 - loss: 2.0432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 391/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2362 - loss: 2.0307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 416/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2409 - loss: 2.0189" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 442/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2455 - loss: 2.0074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 467/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2498 - loss: 1.9967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 493/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2541 - loss: 1.9861" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 519/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2584 - loss: 1.9760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 544/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2623 - loss: 1.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 569/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2660 - loss: 1.9576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 594/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.2696 - loss: 1.9489" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 618/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2730 - loss: 1.9408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 643/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2764 - loss: 1.9327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 667/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2795 - loss: 1.9250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 692/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2827 - loss: 1.9174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 716/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2856 - loss: 1.9103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 740/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2884 - loss: 1.9034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 765/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2913 - loss: 1.8964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 790/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2941 - loss: 1.8895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 814/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2967 - loss: 1.8831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 839/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.2994 - loss: 1.8765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 864/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3020 - loss: 1.8701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 888/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3045 - loss: 1.8641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 912/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3069 - loss: 1.8582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 936/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3093 - loss: 1.8525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 961/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3117 - loss: 1.8467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 985/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3140 - loss: 1.8412" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1009/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3162 - loss: 1.8359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1032/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3182 - loss: 1.8310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1056/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3203 - loss: 1.8259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1080/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.3224 - loss: 1.8209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1103/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3244 - loss: 1.8163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1127/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3263 - loss: 1.8115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1152/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3284 - loss: 1.8066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1177/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3304 - loss: 1.8018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1202/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3323 - loss: 1.7971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1227/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3343 - loss: 1.7924" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1252/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3361 - loss: 1.7879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1277/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3380 - loss: 1.7835" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1302/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3398 - loss: 1.7791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1326/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3415 - loss: 1.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1350/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3432 - loss: 1.7710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1374/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3448 - loss: 1.7670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1398/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3464 - loss: 1.7631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1423/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3481 - loss: 1.7591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1448/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3497 - loss: 1.7552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1473/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3513 - loss: 1.7513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1498/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3529 - loss: 1.7475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1523/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3544 - loss: 1.7438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1547/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3559 - loss: 1.7402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.3569 - loss: 1.7378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.3569 - loss: 1.7377 - val_accuracy: 0.5424 - val_loss: 1.2687\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:17\u001b[0m 50ms/step - accuracy: 0.4688 - loss: 1.1854" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 26/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.5545 - loss: 1.1772 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 50/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.5560 - loss: 1.1920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 74/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.5554 - loss: 1.1979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 100/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.5543 - loss: 1.2050" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 125/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5541 - loss: 1.2086" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 151/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5536 - loss: 1.2140" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 177/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5536 - loss: 1.2175" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 201/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5533 - loss: 1.2205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 226/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5528 - loss: 1.2234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 251/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5527 - loss: 1.2249" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 276/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5530 - loss: 1.2257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 301/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5533 - loss: 1.2261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 326/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5537 - loss: 1.2263" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 351/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5542 - loss: 1.2261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 376/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5547 - loss: 1.2257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 401/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5553 - loss: 1.2251" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 426/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5558 - loss: 1.2247" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 451/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5563 - loss: 1.2242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 476/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5567 - loss: 1.2237" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 501/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5572 - loss: 1.2232" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 526/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5576 - loss: 1.2227" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 551/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5580 - loss: 1.2222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 575/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.5585 - loss: 1.2216" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 600/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5589 - loss: 1.2209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 625/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5594 - loss: 1.2202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 650/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5599 - loss: 1.2194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 676/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5604 - loss: 1.2186" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 701/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5608 - loss: 1.2180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 726/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5612 - loss: 1.2173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 750/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5615 - loss: 1.2167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 774/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5619 - loss: 1.2162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 799/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5623 - loss: 1.2156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 823/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5626 - loss: 1.2151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 848/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5630 - loss: 1.2145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 872/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5633 - loss: 1.2139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 897/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5637 - loss: 1.2133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 922/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5640 - loss: 1.2126" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 946/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5644 - loss: 1.2120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 971/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5647 - loss: 1.2113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 996/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5651 - loss: 1.2107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1021/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5654 - loss: 1.2100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1046/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5658 - loss: 1.2094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1071/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.5661 - loss: 1.2087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1096/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5665 - loss: 1.2080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1120/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5668 - loss: 1.2074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1144/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5671 - loss: 1.2068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1169/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5675 - loss: 1.2062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1194/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5678 - loss: 1.2055" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1219/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5681 - loss: 1.2049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1244/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5684 - loss: 1.2042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1268/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5687 - loss: 1.2036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1293/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5690 - loss: 1.2030" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1318/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5693 - loss: 1.2024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1342/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5696 - loss: 1.2018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1366/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5699 - loss: 1.2013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1391/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5702 - loss: 1.2007" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1416/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5705 - loss: 1.2001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1440/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5707 - loss: 1.1995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1465/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5710 - loss: 1.1990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1490/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5713 - loss: 1.1984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1514/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5716 - loss: 1.1978" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1538/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5718 - loss: 1.1972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1562/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5721 - loss: 1.1966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.5721 - loss: 1.1966 - val_accuracy: 0.5967 - val_loss: 1.1490\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:12\u001b[0m 46ms/step - accuracy: 0.8125 - loss: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 24/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6838 - loss: 0.9586 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 47/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6592 - loss: 1.0065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 70/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6483 - loss: 1.0209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 92/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6415 - loss: 1.0309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 115/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6383 - loss: 1.0345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 138/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6364 - loss: 1.0354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 160/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6356 - loss: 1.0355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 183/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6348 - loss: 1.0362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 206/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6338 - loss: 1.0378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 229/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6331 - loss: 1.0387" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 252/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6328 - loss: 1.0387" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 275/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6325 - loss: 1.0386" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 299/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6324 - loss: 1.0386" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 323/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6323 - loss: 1.0389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 346/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6323 - loss: 1.0389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 370/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6323 - loss: 1.0391" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 394/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6322 - loss: 1.0394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 418/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6323 - loss: 1.0394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 441/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6324 - loss: 1.0393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 465/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6326 - loss: 1.0389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 489/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6329 - loss: 1.0385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 512/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6331 - loss: 1.0380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 536/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6332 - loss: 1.0376" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 559/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6334 - loss: 1.0370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 583/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6337 - loss: 1.0364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 607/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6339 - loss: 1.0359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 630/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6341 - loss: 1.0354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 654/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6343 - loss: 1.0349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 678/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6345 - loss: 1.0345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 702/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6347 - loss: 1.0340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 726/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6349 - loss: 1.0336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 750/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6351 - loss: 1.0331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 774/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6353 - loss: 1.0327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 798/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6355 - loss: 1.0323" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 822/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6356 - loss: 1.0319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 846/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6358 - loss: 1.0316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 870/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6360 - loss: 1.0312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 893/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6361 - loss: 1.0309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 917/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6362 - loss: 1.0306" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 941/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6364 - loss: 1.0303" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 965/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6365 - loss: 1.0300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 989/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6367 - loss: 1.0297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1013/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6368 - loss: 1.0294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1037/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6369 - loss: 1.0292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1061/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6370 - loss: 1.0289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1085/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6371 - loss: 1.0287" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1109/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6373 - loss: 1.0284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1133/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6374 - loss: 1.0281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1157/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6375 - loss: 1.0278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1180/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6376 - loss: 1.0275" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1204/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6377 - loss: 1.0272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1228/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6378 - loss: 1.0269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1251/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6379 - loss: 1.0267" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1275/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6380 - loss: 1.0264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1299/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6381 - loss: 1.0262" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1322/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6382 - loss: 1.0260" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1345/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6382 - loss: 1.0258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1369/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6383 - loss: 1.0256" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1393/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6384 - loss: 1.0254" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1416/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6385 - loss: 1.0252" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1439/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6385 - loss: 1.0250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1463/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6386 - loss: 1.0248" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1486/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6387 - loss: 1.0246" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1510/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6387 - loss: 1.0244" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1534/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6388 - loss: 1.0242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1558/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6389 - loss: 1.0240" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.6389 - loss: 1.0240 - val_accuracy: 0.6467 - val_loss: 0.9909\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:15\u001b[0m 48ms/step - accuracy: 0.5938 - loss: 1.2151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 23/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6706 - loss: 0.9344 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 45/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6723 - loss: 0.9242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 67/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6708 - loss: 0.9287" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 89/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6697 - loss: 0.9329" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 111/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6697 - loss: 0.9331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 133/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6699 - loss: 0.9335" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 155/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6702 - loss: 0.9330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 177/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6709 - loss: 0.9315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 199/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6716 - loss: 0.9300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 221/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6724 - loss: 0.9284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 243/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6732 - loss: 0.9266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 265/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6736 - loss: 0.9256" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 287/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6737 - loss: 0.9251" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 309/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6739 - loss: 0.9245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 331/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6741 - loss: 0.9239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 353/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6743 - loss: 0.9234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 376/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6745 - loss: 0.9227" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 399/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6748 - loss: 0.9220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 422/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6749 - loss: 0.9214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 445/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6751 - loss: 0.9209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 469/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 493/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6753 - loss: 0.9200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 516/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6754 - loss: 0.9197" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 539/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6754 - loss: 0.9195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 562/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6754 - loss: 0.9194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 586/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6753 - loss: 0.9194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 610/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 634/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 657/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 680/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 703/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 726/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 749/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 773/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 797/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6752 - loss: 0.9191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 821/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6753 - loss: 0.9189" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 844/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6754 - loss: 0.9187" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 868/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6754 - loss: 0.9185" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 892/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6755 - loss: 0.9182" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 915/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6755 - loss: 0.9180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 938/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6756 - loss: 0.9178" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 961/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6756 - loss: 0.9176" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 984/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6757 - loss: 0.9175" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1007/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6757 - loss: 0.9173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1030/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6758 - loss: 0.9172" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1054/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6758 - loss: 0.9171" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1077/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6758 - loss: 0.9170" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1100/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6758 - loss: 0.9168" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1124/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6759 - loss: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1147/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6759 - loss: 0.9167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1170/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6759 - loss: 0.9166" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1194/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6759 - loss: 0.9165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1218/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6759 - loss: 0.9165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1242/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6760 - loss: 0.9164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1265/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6760 - loss: 0.9164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1288/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6760 - loss: 0.9164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1311/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6760 - loss: 0.9164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1333/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6761 - loss: 0.9163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1356/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6761 - loss: 0.9163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1379/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6761 - loss: 0.9163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1403/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6761 - loss: 0.9163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1427/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6762 - loss: 0.9162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1450/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6762 - loss: 0.9162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1473/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6763 - loss: 0.9161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1496/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6763 - loss: 0.9160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1519/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6764 - loss: 0.9160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1543/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6764 - loss: 0.9159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.6764 - loss: 0.9159 - val_accuracy: 0.6715 - val_loss: 0.9493\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:13\u001b[0m 47ms/step - accuracy: 0.5938 - loss: 0.9861" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 23/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6677 - loss: 0.9050 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 44/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6748 - loss: 0.8918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 66/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6757 - loss: 0.8906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 88/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6782 - loss: 0.8853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 109/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6810 - loss: 0.8805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 130/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6828 - loss: 0.8780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 152/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6836 - loss: 0.8777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 174/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6834 - loss: 0.8788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 196/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6837 - loss: 0.8793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 218/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6841 - loss: 0.8791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 240/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6847 - loss: 0.8784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 262/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6851 - loss: 0.8775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 284/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6857 - loss: 0.8763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 307/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6864 - loss: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 330/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6870 - loss: 0.8737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 353/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6875 - loss: 0.8728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 376/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6880 - loss: 0.8720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 399/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6885 - loss: 0.8710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 422/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6889 - loss: 0.8701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 444/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6893 - loss: 0.8692" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 466/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6897 - loss: 0.8684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 489/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6901 - loss: 0.8676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 511/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6905 - loss: 0.8670" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 534/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6908 - loss: 0.8662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 557/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6912 - loss: 0.8655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 579/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6915 - loss: 0.8650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 602/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6918 - loss: 0.8645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 624/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6921 - loss: 0.8641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 647/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6923 - loss: 0.8637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 670/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.6926 - loss: 0.8633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 693/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6928 - loss: 0.8629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 716/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6931 - loss: 0.8625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 740/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6933 - loss: 0.8621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 763/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6935 - loss: 0.8616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 787/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6938 - loss: 0.8612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 810/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6940 - loss: 0.8608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 834/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6943 - loss: 0.8603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 858/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6945 - loss: 0.8598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 882/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6947 - loss: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 905/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6949 - loss: 0.8590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 928/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6951 - loss: 0.8587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 950/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6953 - loss: 0.8583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 973/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6955 - loss: 0.8579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 996/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6957 - loss: 0.8575" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1020/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6958 - loss: 0.8571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1044/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6960 - loss: 0.8566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1068/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6962 - loss: 0.8562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1092/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6964 - loss: 0.8558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1116/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.6966 - loss: 0.8554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1140/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6967 - loss: 0.8550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1163/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6969 - loss: 0.8547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1187/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6970 - loss: 0.8544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1211/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6972 - loss: 0.8541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1235/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6973 - loss: 0.8539" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1259/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6974 - loss: 0.8536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1283/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6976 - loss: 0.8533" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1307/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6977 - loss: 0.8530" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1331/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6978 - loss: 0.8528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1355/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6979 - loss: 0.8525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1379/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6981 - loss: 0.8523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1403/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6982 - loss: 0.8520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1427/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6983 - loss: 0.8518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1451/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6984 - loss: 0.8515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1475/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6985 - loss: 0.8513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1499/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6986 - loss: 0.8511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1523/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6988 - loss: 0.8509" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1547/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6989 - loss: 0.8507" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.6989 - loss: 0.8506 - val_accuracy: 0.6999 - val_loss: 0.8737\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:13\u001b[0m 47ms/step - accuracy: 0.6250 - loss: 0.8435" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 24/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.6897 - loss: 0.8113 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 48/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7101 - loss: 0.7816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 73/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7198 - loss: 0.7702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 97/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7223 - loss: 0.7697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 121/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7237 - loss: 0.7687" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 146/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7246 - loss: 0.7687" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 170/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7251 - loss: 0.7687" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 194/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7253 - loss: 0.7694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 218/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7255 - loss: 0.7701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 242/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7254 - loss: 0.7715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 266/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7253 - loss: 0.7732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 290/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7255 - loss: 0.7743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 314/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7257 - loss: 0.7750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 338/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7258 - loss: 0.7757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 363/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7260 - loss: 0.7767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 387/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7260 - loss: 0.7777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 412/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7261 - loss: 0.7787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 436/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7262 - loss: 0.7793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 461/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7263 - loss: 0.7798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 485/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7263 - loss: 0.7802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 510/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7264 - loss: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 535/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7266 - loss: 0.7807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 559/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7267 - loss: 0.7809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 583/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7268 - loss: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 607/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7269 - loss: 0.7811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 632/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7271 - loss: 0.7811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 657/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7272 - loss: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 682/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7273 - loss: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 707/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7274 - loss: 0.7809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 732/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 757/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7277 - loss: 0.7806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 782/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7278 - loss: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 806/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7278 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 831/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 856/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 881/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 905/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 929/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 954/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 979/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1004/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1029/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1053/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1078/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7279 - loss: 0.7804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1103/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7278 - loss: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1128/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7278 - loss: 0.7806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1152/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7278 - loss: 0.7806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1177/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7277 - loss: 0.7807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1201/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7277 - loss: 0.7807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1226/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7277 - loss: 0.7807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1251/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7277 - loss: 0.7807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1276/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7277 - loss: 0.7808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1301/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7277 - loss: 0.7808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1325/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1350/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1375/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1399/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1424/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1449/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1474/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7276 - loss: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1499/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7275 - loss: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1524/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7275 - loss: 0.7810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1549/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7275 - loss: 0.7811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7275 - loss: 0.7811 - val_accuracy: 0.7032 - val_loss: 0.8687\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:15\u001b[0m 48ms/step - accuracy: 0.7188 - loss: 0.6011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 24/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7582 - loss: 0.6368 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 47/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7508 - loss: 0.6678" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 70/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7499 - loss: 0.6820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 93/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7489 - loss: 0.6915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 117/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7496 - loss: 0.6933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 140/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7509 - loss: 0.6927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 163/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7518 - loss: 0.6931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 186/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7526 - loss: 0.6934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 210/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7532 - loss: 0.6937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 233/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7537 - loss: 0.6943" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 256/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7543 - loss: 0.6942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 279/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7548 - loss: 0.6941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 302/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7550 - loss: 0.6943" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 326/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7552 - loss: 0.6945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 350/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7552 - loss: 0.6948" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 373/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7552 - loss: 0.6953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 396/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7551 - loss: 0.6958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 419/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7550 - loss: 0.6965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 442/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7548 - loss: 0.6972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 465/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7545 - loss: 0.6980" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 488/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7543 - loss: 0.6987" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 511/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7540 - loss: 0.6994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 534/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7537 - loss: 0.7001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 557/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7535 - loss: 0.7007" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 579/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7532 - loss: 0.7013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 602/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7530 - loss: 0.7018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 625/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7529 - loss: 0.7023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 648/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7527 - loss: 0.7028" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 671/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7525 - loss: 0.7033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 694/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7523 - loss: 0.7038" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 718/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7522 - loss: 0.7043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 742/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7520 - loss: 0.7048" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 765/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7518 - loss: 0.7052" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 788/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7517 - loss: 0.7057" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 811/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7515 - loss: 0.7061" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 834/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7514 - loss: 0.7066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 857/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7512 - loss: 0.7069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 880/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7511 - loss: 0.7073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 904/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7510 - loss: 0.7077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 927/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7509 - loss: 0.7081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 950/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7507 - loss: 0.7084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 973/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7506 - loss: 0.7088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 996/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7504 - loss: 0.7092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1019/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7503 - loss: 0.7095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1042/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7502 - loss: 0.7098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1065/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7501 - loss: 0.7101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1088/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7500 - loss: 0.7104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1111/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7499 - loss: 0.7107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1135/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7497 - loss: 0.7110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1159/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7496 - loss: 0.7113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1183/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7495 - loss: 0.7116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1207/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7494 - loss: 0.7119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1231/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7493 - loss: 0.7122" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1255/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7492 - loss: 0.7124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1279/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7491 - loss: 0.7127" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1303/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7490 - loss: 0.7130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1327/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7489 - loss: 0.7133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1351/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7488 - loss: 0.7135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1375/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7487 - loss: 0.7138" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1399/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7486 - loss: 0.7141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1423/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7485 - loss: 0.7143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1447/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7484 - loss: 0.7146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1472/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7483 - loss: 0.7149" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1496/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7482 - loss: 0.7152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1520/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7481 - loss: 0.7155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1545/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7480 - loss: 0.7158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7479 - loss: 0.7160 - val_accuracy: 0.7088 - val_loss: 0.8571\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:14\u001b[0m 48ms/step - accuracy: 0.7188 - loss: 0.8551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 25/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7536 - loss: 0.7247 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 49/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7609 - loss: 0.6925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 74/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7659 - loss: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 99/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7683 - loss: 0.6690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 123/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7697 - loss: 0.6649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 148/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7705 - loss: 0.6625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 172/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7706 - loss: 0.6619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 197/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7708 - loss: 0.6618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 221/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7705 - loss: 0.6624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 246/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7701 - loss: 0.6633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 270/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7697 - loss: 0.6643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 295/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7694 - loss: 0.6648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 319/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7693 - loss: 0.6649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 344/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7691 - loss: 0.6653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 369/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7690 - loss: 0.6658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 394/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7689 - loss: 0.6662" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 418/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7689 - loss: 0.6665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 442/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7688 - loss: 0.6668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 467/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7688 - loss: 0.6672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 492/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7686 - loss: 0.6677" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 517/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7684 - loss: 0.6680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 542/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7682 - loss: 0.6684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 566/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7681 - loss: 0.6687" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 591/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7679 - loss: 0.6691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 616/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7677 - loss: 0.6695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 641/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7675 - loss: 0.6699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 666/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7673 - loss: 0.6702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 691/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7672 - loss: 0.6705" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 716/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7671 - loss: 0.6707" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 741/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7670 - loss: 0.6710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 766/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7669 - loss: 0.6713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 791/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7668 - loss: 0.6715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 816/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7667 - loss: 0.6717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 841/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7666 - loss: 0.6720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 866/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7664 - loss: 0.6722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 891/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7664 - loss: 0.6724" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 916/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7663 - loss: 0.6726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 941/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7662 - loss: 0.6728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 966/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7661 - loss: 0.6730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 991/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7661 - loss: 0.6731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1016/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7660 - loss: 0.6733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1041/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7659 - loss: 0.6734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1066/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7659 - loss: 0.6736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1091/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7658 - loss: 0.6737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1116/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7658 - loss: 0.6738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1141/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7657 - loss: 0.6739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1166/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7657 - loss: 0.6739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1191/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7657 - loss: 0.6740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1216/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7656 - loss: 0.6740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1241/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7656 - loss: 0.6740" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1266/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7656 - loss: 0.6741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1291/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7656 - loss: 0.6742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1316/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7655 - loss: 0.6742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1341/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7655 - loss: 0.6743" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1366/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7654 - loss: 0.6744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1391/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7654 - loss: 0.6745" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1416/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7653 - loss: 0.6746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1441/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7653 - loss: 0.6747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1466/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7652 - loss: 0.6748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1491/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7652 - loss: 0.6749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1516/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7651 - loss: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1541/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7650 - loss: 0.6751" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7650 - loss: 0.6752 - val_accuracy: 0.7035 - val_loss: 0.8852\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:13\u001b[0m 47ms/step - accuracy: 0.7812 - loss: 0.5414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 24/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7874 - loss: 0.6205 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 48/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7879 - loss: 0.6153" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 72/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7876 - loss: 0.6167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 95/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7875 - loss: 0.6167" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 118/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7867 - loss: 0.6200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 141/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7859 - loss: 0.6224" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 165/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7853 - loss: 0.6242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 188/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7845 - loss: 0.6261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 212/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7839 - loss: 0.6271" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 235/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7834 - loss: 0.6277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 259/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7830 - loss: 0.6282" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 283/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7826 - loss: 0.6287" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 306/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7823 - loss: 0.6292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 330/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7820 - loss: 0.6294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 354/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7818 - loss: 0.6295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 378/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7816 - loss: 0.6296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 401/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7814 - loss: 0.6296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 424/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7811 - loss: 0.6298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 447/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7808 - loss: 0.6301" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 471/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7805 - loss: 0.6305" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 495/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7803 - loss: 0.6307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 518/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7802 - loss: 0.6309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 542/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7801 - loss: 0.6310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 566/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7801 - loss: 0.6311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 589/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7800 - loss: 0.6312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 612/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7800 - loss: 0.6313" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 636/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7800 - loss: 0.6314" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 660/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7799 - loss: 0.6316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 684/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7799 - loss: 0.6318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 708/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7798 - loss: 0.6319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 732/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7798 - loss: 0.6320" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 755/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7798 - loss: 0.6321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 779/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7798 - loss: 0.6321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 803/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7798 - loss: 0.6322" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 827/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7797 - loss: 0.6323" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 851/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7797 - loss: 0.6325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 874/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7796 - loss: 0.6328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 897/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7795 - loss: 0.6330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 920/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7794 - loss: 0.6333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 943/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7794 - loss: 0.6334" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 967/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7793 - loss: 0.6336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 991/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7793 - loss: 0.6338" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1015/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7792 - loss: 0.6340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1039/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7791 - loss: 0.6341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1062/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7791 - loss: 0.6343" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1086/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7790 - loss: 0.6345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1110/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7790 - loss: 0.6346" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1133/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7789 - loss: 0.6348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1156/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7788 - loss: 0.6349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1180/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7788 - loss: 0.6350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1203/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7787 - loss: 0.6352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1227/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7787 - loss: 0.6353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1251/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7786 - loss: 0.6354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1275/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7786 - loss: 0.6356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1299/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7785 - loss: 0.6357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1323/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7785 - loss: 0.6359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1347/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7784 - loss: 0.6360" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1371/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7783 - loss: 0.6361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1395/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7783 - loss: 0.6363" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1418/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7782 - loss: 0.6364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1441/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7782 - loss: 0.6366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1464/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7782 - loss: 0.6367" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1488/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7781 - loss: 0.6368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1512/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7781 - loss: 0.6369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1536/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7780 - loss: 0.6371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1560/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7780 - loss: 0.6372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7780 - loss: 0.6372 - val_accuracy: 0.7126 - val_loss: 0.8672\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:12\u001b[0m 47ms/step - accuracy: 0.9062 - loss: 0.3208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 24/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8187 - loss: 0.4975 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 46/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8116 - loss: 0.5203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 68/1563\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8089 - loss: 0.5317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 90/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8076 - loss: 0.5366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 112/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8073 - loss: 0.5397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 135/1563\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8067 - loss: 0.5425" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 158/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8061 - loss: 0.5446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 181/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8057 - loss: 0.5466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 203/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8052 - loss: 0.5486" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 226/1563\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8048 - loss: 0.5504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 248/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8044 - loss: 0.5523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 271/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8040 - loss: 0.5541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 294/1563\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8037 - loss: 0.5557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 317/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8034 - loss: 0.5571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 339/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8030 - loss: 0.5586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 361/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8027 - loss: 0.5599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 384/1563\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8024 - loss: 0.5612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 406/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8021 - loss: 0.5623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 428/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8018 - loss: 0.5634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 450/1563\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8015 - loss: 0.5645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 472/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8012 - loss: 0.5655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 494/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8010 - loss: 0.5665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 516/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8007 - loss: 0.5676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 539/1563\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8004 - loss: 0.5686" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 562/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8001 - loss: 0.5695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 585/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7998 - loss: 0.5703" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 608/1563\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7996 - loss: 0.5711" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 630/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7994 - loss: 0.5718" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 652/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7992 - loss: 0.5725" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 674/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.7990 - loss: 0.5730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 696/1563\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7988 - loss: 0.5736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 718/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7986 - loss: 0.5741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 740/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7984 - loss: 0.5745" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 762/1563\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7982 - loss: 0.5749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 784/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7981 - loss: 0.5752" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 806/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7980 - loss: 0.5756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 828/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7979 - loss: 0.5759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 850/1563\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7977 - loss: 0.5763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 872/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7976 - loss: 0.5767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 893/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7975 - loss: 0.5771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 914/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7974 - loss: 0.5774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 936/1563\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7973 - loss: 0.5777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 958/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7972 - loss: 0.5780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 980/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7971 - loss: 0.5784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1002/1563\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7970 - loss: 0.5787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1024/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7969 - loss: 0.5791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1045/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7968 - loss: 0.5794" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1066/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7967 - loss: 0.5798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1088/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7966 - loss: 0.5801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1110/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7964 - loss: 0.5805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1132/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7963 - loss: 0.5808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1154/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7962 - loss: 0.5811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1176/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7961 - loss: 0.5814" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1198/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7960 - loss: 0.5817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1220/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7959 - loss: 0.5820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1242/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7958 - loss: 0.5823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1264/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7957 - loss: 0.5826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1286/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7956 - loss: 0.5829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1308/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7955 - loss: 0.5832" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1330/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7955 - loss: 0.5834" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1352/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7954 - loss: 0.5837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1374/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7953 - loss: 0.5840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1396/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7952 - loss: 0.5842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1418/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7951 - loss: 0.5845" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1440/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7951 - loss: 0.5847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1462/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7950 - loss: 0.5850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1484/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7949 - loss: 0.5852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1506/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7948 - loss: 0.5855" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1528/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7948 - loss: 0.5857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1551/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7947 - loss: 0.5860" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 3ms/step - accuracy: 0.7946 - loss: 0.5862 - val_accuracy: 0.7163 - val_loss: 0.8550\n" ] } ], "source": [ "model.compile(optimizer='adam',\n", " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=['accuracy'])\n", "\n", "history = model.fit(train_images, train_labels, epochs=10, \n", " validation_data=(test_images, test_labels))" ] }, { "cell_type": "markdown", "metadata": { "id": "jKgyC5K_4O0d" }, "source": [ "### Evaluate the model" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "gtyDF0MKUcM7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "313/313 - 1s - 2ms/step - accuracy: 0.7122 - loss: 0.8709\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVPVJREFUeJzt3XlcVPX+x/HXDDsIyC4gCuK+Lyi5lGaWZXnLupXmLbNb3UrbuP1Ky7Tlpre6md00za7WbbFsz3stu2al5h6Kae6i4sYmyirbzPz+GAQnNEWBwwzv5+MxD5jvnDPzGVDn7fd8F5PNZrMhIiIi4iLMRhcgIiIiUpsUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlGBpuVqxYwfDhw4mKisJkMvHll1+e85wff/yRnj174uXlRevWrXnnnXfqvE4RERFxHoaGm8LCQrp168asWbPO6/h9+/Zx7bXXcvnll5OSksIjjzzC3XffzbffflvHlYqIiIizMDWUjTNNJhNffPEFN9xww1mPeeKJJ1i8eDFbt26tbBs5ciQnTpxgyZIl9VCliIiINHTuRhdQE2vWrGHIkCEObUOHDuWRRx456zklJSWUlJRU3rdareTk5BASEoLJZKqrUkVERKQW2Ww28vPziYqKwmz+/QtPThVu0tPTiYiIcGiLiIggLy+PkydP4uPjU+2cadOm8eyzz9ZXiSIiIlKHDh48SPPmzX/3GKcKNxdi4sSJJCUlVd7Pzc2lRYsWHDx4kICAAAMrExERkfOVl5dHTEwM/v7+5zzWqcJNs2bNyMjIcGjLyMggICDgjL02AF5eXnh5eVVrDwgIULgRERFxMuczpMSp1rnp27cvy5Ytc2hbunQpffv2NagiERERaWgMDTcFBQWkpKSQkpIC2Kd6p6SkkJaWBtgvKd1xxx2Vx993332kpqby+OOPs2PHDt544w0+/vhjHn30USPKFxERkQbI0HDz888/06NHD3r06AFAUlISPXr0YPLkyQAcPXq0MugAxMXFsXjxYpYuXUq3bt145ZVX+Ne//sXQoUMNqV9EREQangazzk19ycvLIzAwkNzcXI25ERERcRI1+fx2qjE3IiIiIueicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlGB5uZs2aRWxsLN7e3iQmJrJ+/fqzHltWVsZzzz1HfHw83t7edOvWjSVLltRjtSIiItLQGRpuFi5cSFJSElOmTGHjxo1069aNoUOHkpmZecbjJ02axJtvvsnrr7/Otm3buO+++xgxYgSbNm2q58pFRESkoTLZbDabUS+emJhI7969mTlzJgBWq5WYmBgefPBBJkyYUO34qKgonnrqKcaNG1fZdtNNN+Hj48P7779/Xq+Zl5dHYGAgubm5BAQE1M4bERERkTpVk89vw3puSktLSU5OZsiQIVXFmM0MGTKENWvWnPGckpISvL29Hdp8fHz46aefzvo6JSUl5OXlOdxERETEdRkWbrKzs7FYLERERDi0R0REkJ6efsZzhg4dyvTp09m9ezdWq5WlS5fy+eefc/To0bO+zrRp0wgMDKy8xcTE1Or7EBERkYbF8AHFNfHaa6/Rpk0b2rdvj6enJ+PHj2fs2LGYzWd/GxMnTiQ3N7fydvDgwXqsWEREROqbYeEmNDQUNzc3MjIyHNozMjJo1qzZGc8JCwvjyy+/pLCwkAMHDrBjxw6aNGlCq1atzvo6Xl5eBAQEONxERETEdRkWbjw9PenVqxfLli2rbLNarSxbtoy+ffv+7rne3t5ER0dTXl7OZ599xvXXX1/X5YqIiIiTcDfyxZOSkhgzZgwJCQn06dOHGTNmUFhYyNixYwG44447iI6OZtq0aQCsW7eOw4cP0717dw4fPswzzzyD1Wrl8ccfN/JtiIiISANiaLi59dZbycrKYvLkyaSnp9O9e3eWLFlSOcg4LS3NYTxNcXExkyZNIjU1lSZNmjBs2DDee+89mjZtatA7EBERkYbG0HVujKB1bkRERJyPU6xzIyIiIlIXFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FIUbERERcSkKNyIiIuJSFG5ERETEpSjciIiIiEtRuBERERGXonAjIiIiLkXhRkRERFyKwo2IiIi4FMPDzaxZs4iNjcXb25vExETWr1//u8fPmDGDdu3a4ePjQ0xMDI8++ijFxcX1VK2IiIg0dIaGm4ULF5KUlMSUKVPYuHEj3bp1Y+jQoWRmZp7x+AULFjBhwgSmTJnC9u3bmTdvHgsXLuTJJ5+s58pFRESkoTI03EyfPp177rmHsWPH0rFjR+bMmYOvry/z588/4/GrV6+mf//+3HbbbcTGxnLVVVcxatSoc/b2iIiISONhWLgpLS0lOTmZIUOGVBVjNjNkyBDWrFlzxnP69etHcnJyZZhJTU3l66+/ZtiwYWd9nZKSEvLy8hxuIiIi4rrcjXrh7OxsLBYLERERDu0RERHs2LHjjOfcdtttZGdnM2DAAGw2G+Xl5dx3332/e1lq2rRpPPvss7Vau4iIiDRchg8orokff/yRqVOn8sYbb7Bx40Y+//xzFi9ezPPPP3/WcyZOnEhubm7l7eDBg/VYsYiIiNQ3w3puQkNDcXNzIyMjw6E9IyODZs2anfGcp59+mttvv527774bgC5dulBYWMi9997LU089hdlcPat5eXnh5eVV+29AREREGiTDem48PT3p1asXy5Ytq2yzWq0sW7aMvn37nvGcoqKiagHGzc0NAJvNVnfFioiIiNMwrOcGICkpiTFjxpCQkECfPn2YMWMGhYWFjB07FoA77riD6Ohopk2bBsDw4cOZPn06PXr0IDExkT179vD0008zfPjwypAjIiIijZuh4ebWW28lKyuLyZMnk56eTvfu3VmyZEnlIOO0tDSHnppJkyZhMpmYNGkShw8fJiwsjOHDh/PCCy8Y9RZERESkgTHZGtn1nLy8PAIDA8nNzSUgIMDockREROQ81OTz26lmS4mIiIicS43DTWxsLM899xxpaWl1UY+IiIjIRalxuHnkkUf4/PPPadWqFVdeeSUfffQRJSUldVGbiIiISI1dULhJSUlh/fr1dOjQgQcffJDIyEjGjx/Pxo0b66JGERERkfN20QOKy8rKeOONN3jiiScoKyujS5cuPPTQQ4wdOxaTyVRbddYaDSgWERFxPjX5/L7gqeBlZWV88cUXvP322yxdupRLLrmEP//5zxw6dIgnn3yS7777jgULFlzo04uIiIhckBqHm40bN/L222/z4YcfYjabueOOO3j11Vdp37595TEjRoygd+/etVqoiIiIOIdyixV3N+MmZNc43PTu3Zsrr7yS2bNnc8MNN+Dh4VHtmLi4OEaOHFkrBYqIiEjDY7PZOFZYyp7Mgmq3bjGBvHl7gmG11TjcpKam0rJly989xs/Pj7fffvuCixIREZGGwWazcSS3mD2ZBezOyGdvVlWIOV5UdsZzfDOM3RKpxuEmMzOT9PR0EhMTHdrXrVuHm5sbCQnGJTURERG5MOUWKwdyiqr1wuzNKqCo1HLGc0wmaB7kQ5twf1qHN6F1WBPiw5vQOrxJPVfvqMbhZty4cTz++OPVws3hw4d58cUXWbduXa0VJyIiIrWruMxCalYhuzPz2ZtZwJ6Knph92YWUWc48gdrDzURsiJ89wJx2axXaBB/PhrdxdY3DzbZt2+jZs2e19h49erBt27ZaKUpEREQuTl5xWVXvS2YBuyu+P3i8iLMtAuPj4eYQXuLD7F9bhvjiYeAA4Zqqcbjx8vIiIyODVq1aObQfPXoUd3dDNxkXERFpVGw2G9kFpVW9MKf1xGTknX33gKa+HrQOa1KtJyYq0AezueGtUVdTNU4jV111FRMnTuSrr74iMDAQgBMnTvDkk09y5ZVX1nqBIiIijZ3VauPwiZPsyarohcmoCjG5J888qBcgIsCrcjxMfMWYmDYRTQjx82yQC+3WlhqHm3/84x9cdtlltGzZkh49egCQkpJCREQE7733Xq0XKCIi0liUWawcOFboOKg3q4C9mYWcLDv7oN4Wwb7VemLiw5sQ4F19uZbGoMbhJjo6ml9++YUPPviAzZs34+Pjw9ixYxk1atQZ17wRERGRMzuae5L1+3JYm5pD8oEcUrMKKbeefVBvXKgfbcL9K2cktQ5rQqswP7w9Gt6gXiNd0CAZPz8/7r333tquRURExGXZbDYOHT/J2tRjrN+Xw7p9OaTlFFU7ztfTzWFadZuKINMi2NfQVX+dyQWPAN62bRtpaWmUlpY6tP/hD3+46KJEREScnc1mIzW70B5kKgLNkdxih2PMJugcHUif2GD6xAXTKTqQqEBvlx4PUx8uaIXiESNGsGXLFkwmE6c2FT/1i7BYznxNUERExJVZrTZ2Zxawbt8x1u3LYf2+HLLyHWcsuZtNdG0eSGKrEPrEBZPQMgj/Rjoupi7VONw8/PDDxMXFsWzZMuLi4li/fj3Hjh3jr3/9K//4xz/qokYREZEGx2K1sf1oHusqemY27M+pth2Bp7uZHjFNSYwLJrFVCD1aNMXXU8um1LUa/4TXrFnD999/T2hoKGazGbPZzIABA5g2bRoPPfQQmzZtqos6RUREDFVmsbL1cG5lr8yG/TnkF5c7HOPj4UavlkEkxtkvM3WLaarBvgaocbixWCz4+/sDEBoaypEjR2jXrh0tW7Zk586dtV6giIiIEUrKLWw+mMv6istMyQeOV9tjyd/LnYTYIPrEhZDYKpgu0YFOtZKvq6pxuOncuTObN28mLi6OxMREXnrpJTw9PZk7d261VYtFREScxclSC5vSjrN2Xw7r9x1jU9oJSsqtDsc09fWgd2wwiXHBXNIqhA6RAbi5wIq+rqbG4WbSpEkUFhYC8Nxzz3Hddddx6aWXEhISwsKFC2u9QBERkbpQUFJO8oHjrEu198z8cuhEtY0jQ5t4khhnH/yb2CqYtuH+LrE9gasz2Wxn2z7r/OXk5BAUFOQUU9fy8vIIDAwkNzeXgIAAo8sREZF6kltUxob9OazbZ5+WvfVIHpbfLJjXLMCbxFbBJFZcZmoV6ucUn22NQU0+v2vUc1NWVoaPjw8pKSl07ty5sj04OPjCKhUREakjxwpK2LDfvvrvun057EjPq7YbdkywT2XPzCVxIcQE+yjMuIAahRsPDw9atGihtWxERKTBycwrrhwvsy41h92ZBdWOaRXmZ5+WXRFoopr6GFCp1LUaj7l56qmnePLJJ3nvvffUYyMiIoYoKi1nR3o+vx7JY8uhE6zfl8P+Y9W3MmgX4U9iK/u07D5xwYT7extQrdS3GoebmTNnsmfPHqKiomjZsiV+fn4Oj2/cuLHWihMREcnKL2Hb0Ty2Hcnj1yO5bDuax77swmqXmMwm6BgVQJ9Y+3iZ3rHBBPt5GlO0GKrG4eaGG26ogzJERKSxs1ptHMgpsgeYI3lsO5rHr0fyqm1hcEq4vxcdowLoGBlAQmwQCbHBBGgrA6GWZks5E82WEhExXnGZhV0Z+RW9MfYgs/1oXrVF8gBMJmgV6kfHqEA6RgZUBpowfy8DKhej1NlsKRERkZo6XlhaeVnJ3huTy96swmrTsAG83M20j7SHl05R9iDTvpm/9mOSGqnxnxaz2fy70+Q0k0pEpHGy2WwcOn7S3hNTMTZm25E8juQWn/H4YD9Pe4Cp6I3pFBVAbIgf7tq+QC5SjcPNF1984XC/rKyMTZs28e9//5tnn3221goTEZGGq7Tcyu7MfIexMduP5lXbSPKUliG+Dr0xHSMDiQjw0poyUidqbczNggULWLhwIV999VVtPF2d0ZgbEZGaySsuY/tpY2O2Hcljd2Z+ta0KADzdzLRt1sTeGxMZQMeoQDpE+uOvgb5ykQwZc3PJJZdw77331tbTiYhIPbPZbBzNLXYYG7PtaB4Hc06e8fgAb/eKy0lVA33jw5rg6a7LSmKsWgk3J0+e5J///CfR0dG18XQiIlLHrFYbe7IKHKZdbzuSx/GisjMeH93Up3KW0qnxMdFNtVWBNEw1Dje/3SDTZrORn5+Pr68v77//fq0WJyIitSc9t5iVu7NYuTubn/Zkk1NYWu0YN7OJNuFNqqZcVwSapr5aDE+cR43DzauvvuoQbsxmM2FhYSQmJhIUFFSrxYmIyIU7WWph/f4cVuzKYuXuLHZlOO615Ovp9pvZSoG0Dm+Ct4ebQRWL1I4ah5s777yzDsoQEZGLZbPZ2H40v7J3Zv3+HErLrZWPm0zQtXlTLmsTyqVtwujRoikemnYtLqjG4ebtt9+mSZMm3HzzzQ7tn3zyCUVFRYwZM6bWihMRkd+XmV/MT7uzWVlxyy5w3KogKtCbS9uEcWnbUPrHhxKkvZakEahxuJk2bRpvvvlmtfbw8HDuvfdehRsRkTpUXGbh5/3HWbE7ixW7stiRnu/wuI+HG33jQ7i0oncmPsxPg36l0alxuElLSyMuLq5ae8uWLUlLS6uVokRExM5ms7Ero4CVu7NYsTubdanHKDntUhNAl+jAyjDTs2VTvNw1ZkYatxqHm/DwcH755RdiY2Md2jdv3kxISEht1SUi0mhlF5Swak82K3Zls3J3Fpm/2RU7IsDLfqmpTSgDWocS0kQbSIqcrsbhZtSoUTz00EP4+/tz2WWXAbB8+XIefvhhRo4cWesFioi4upJyC8kHjleGmV+P5Dk87u1hJjHOfqnpsrZhtAlvoktNIr+jxuHm+eefZ//+/VxxxRW4u9tPt1qt3HHHHUydOrXWCxQRcTU2m429WQWVYWZtag4nyxw3He4QGcBlFWGmV8sgTc8WqYEL3ltq9+7dpKSk4OPjQ5cuXWjZsmVt11YntLeUiBjheGEpP+3JrpymffQ3O2WHNvGyT9FuG0r/1qGE+3sbVKlIw1Qve0u1adOGNm3aXOjpIiIurbTcyqY0+6ymlbuz2XI4l9P/K+npbiYxLrhyIHD7Zv661CRSS2ocbm666Sb69OnDE0884dD+0ksvsWHDBj755JNaK05ExFnYbDb2ZRdWrDeTxZq9xygsdbzU1C7Cv3LcTJ+4YF1qEqkjNQ43K1as4JlnnqnWfs011/DKK6/URk0iIk4ht6iMVXvtYWbFrmwOn3DcPTvEz5MBFT0zl7YJJSJAl5pE6kONw01BQQGentVXuPTw8CAvL+8MZ4iIuIZTl5pW7T3Gil1Z/HLoBNbTLjV5uJlIaBnMZW3tYaZjZABmsy41idS3GoebLl26sHDhQiZPnuzQ/tFHH9GxY8daK0xExGgWq41fj+Syeu8xVu3J5uf9x6vNamod3sR+qalNGImtgvH1vOChjCJSS2r8t/Dpp5/mxhtvZO/evQwePBiAZcuWsWDBAj799NNaL1BEpL7YbDb2ZBawak82q/ceY23qMfKKyx2OCfHzpG98CJe1CWNAm1CimvoYVK2InE2Nw83w4cP58ssvmTp1Kp9++ik+Pj5069aN77//nuDg4LqoUUSkzhzMKWL13mxW7TnG6r3Hqm086e/lTmKrYPrFh9KvdQjtIjSrSaShu+B1bk7Jy8vjww8/ZN68eSQnJ2OxWM59koG0zo1I45aZX8yavcdYvecYq1OzOZjjOAjYy91M79hg+saH0L91KJ2jAnB3MxtUrYicUi/r3KxYsYJ58+bx2WefERUVxY033sisWbMu9OlEROpE7sky1qYeY03FuJndmQUOj7ubTXSLaUr/+BD6xofSo0VTTdEWcXI1Cjfp6em88847zJs3j7y8PG655RZKSkr48ssvNZhYRBqEotJyft5/nFV7s1mz9xhbD+c6zGgymaBjZAD94kPo1zqU3rHBNPHSIGC5CJYyKC2supWd9n1pAZQWVX1fVnSG9lOPVfQimt3BbAaTW8X3FV9N5tO+d2uAx7nZ283u4OkHwa0M+5Wc99/o4cOHs2LFCq699lpmzJjB1VdfjZubG3PmzKnL+kREfldpuZWUgydYvdc+CHhT2nHKLI5X21uF+dE/PpR+8SFc0iqEIL/qy1lII2AprwgeZwsbpx6r+L7stO9/ezv9MUup0e+s4YlOgHuWGfby5x1uvvnmGx566CHuv/9+bbsgIoaxWG1sO5JnHwS89xgb9lXfdDIq0Jt+re1hpl98KM0CtXieSzp5HPb/BAfXQ3HuOXpFiqC8+NzPeTFO9Vh4NgEP36rvPf3A0/csj53eXjHzzmoBm8X+1WoBa7njfVtF22+PO73d4bHfO9962jmnjrOe9v0Zjqtst579uX1D6vZnfQ7nHW5++ukn5s2bR69evejQoQO33347I0eOrMvaREQqd9C2z2bKZm1qDrknyxyOCa6Ynn2qd6ZliK9mNLmismI4uBZSl0Pqj3A0xf6hW1Mm82mho+Lm4ed4/1zt1R5rAu7qEWwoajxbqrCwkIULFzJ//nzWr1+PxWJh+vTp3HXXXfj7+9dVnbVGs6VEGr6DOUX2GU0Vl5oy8888PbtvfCj9W4fQNtxfKwG7IqsFjm62B5l9yyFtbfXel9C2EDsA/CMrAofvb3pLmlQPI+5e9sFX4lRq8vl9UVPBd+7cybx583jvvfc4ceIEV155JYsWLbrQp6sXCjciDU9WfglrUo+xumLxvLScIofHvdzNJMQG2deaiQ+hS3Sgpme7IpsNju2FfT9WBJqVUHzC8Rj/SIgbCK0GQauBEBBV/3WKIeot3JxisVj4z3/+w/z58xVuROScck+WsS7Vvmje6r3Z7MpwnJ7tZjbRPaZp5ZgZTc92YfkZ9l6Z1B/tl5vyDjk+7hUAsZfag0yrQfaeGvW6NEr1Hm4u1qxZs3j55ZdJT0+nW7duvP766/Tp0+eMxw4aNIjly5dXax82bBiLFy8+52sp3IjUP5vNxqaDJ1i6LYPVe7LZ8pvp2WCfnt2/tT3M9I5rgNOzbTb7h/Da2XBoAwTFQnjHilsH+9cm4frgPZfiPDiwqmrcTNZ2x8fdPCEmsSLMXA6R3cGtgf1ZEEPUyyJ+tWXhwoUkJSUxZ84cEhMTmTFjBkOHDmXnzp2Eh4dXO/7zzz+ntLRq2t2xY8fo1q0bN998c32WLSLnITO/mC82HuaT5EPs+c3iea3C/OhXMQg4sVUIwQ11enZ5CWz5FNa+ARlbq9qLjsHhZMdjfYIholNF2KkIPGHtwadpvZbcoJSX2sNg6o/22+Fk+4yaSiaI7GrvlYkbCC362sfKiFwEw3tuEhMT6d27NzNnzgTAarUSExPDgw8+yIQJE855/owZM5g8eTJHjx7Fz8/vnMer50akbpVZrHy/I5NPfj7EDzszsVR00fh4uHFVpwgGtg2jb3wIkYENfMPJwmzYMA82/AsKM+1tHr7QfTR0uRnyj0DmdsjcZv+ak3r2mTsBzR0DT3gHCGtXNfXXlVit9hB4ahDwgdX2adinC25VNW4m7jLw1b6Ecm5O03NTWlpKcnIyEydOrGwzm80MGTKENWvWnNdzzJs3j5EjR5412JSUlFBSUjXTIi8v7+KKFpEz2pWRzyc/H+SLTYfJLqjqXe3Zoim3JMRwbddI/L09DKzwPGVut/fSbF4Ilop/OwKioc+90GsM+ARVHdtpRNX3ZScha6dj4Mncbh9Dcuq2Z2nV8Saz/UP+9MAT3hGC453vMszx/VU9M/tW2Hu1TucXVhFmBtq/BrU0oEhpTAz9G5SdnY3FYiEiIsKhPSIigh07dpzz/PXr17N161bmzZt31mOmTZvGs88+e9G1ikh1ecVl/GfzET7++RCbD56obA/z9+LGntHc3CuG1uFNjCvwfNlssHcZrHnD/vWUqB7Qdzx0vB7czhHMPHwgqrv9drqTJyBrR1XgydgGmb/aF6A7tsd+2/6fquPdPCG0nWNPT0RHCIxpOON5CrMrBgFXjJs5ccDxcQ8/iO1fMaNpkP09NJTapVFwsv8eOJo3bx5dunQ56+BjgIkTJ5KUlFR5Py8vj5iYmPooT8QlWa021qYe4+OfD/LN1nRKyu2XYtzNJq7oEM4tCTEMbBvmHFO1y07CLx/be2qyKv5DZTJD+2vhknHQ4pKL/1D2aWp/nhaXVLXZbFCQeVoPz68VX3fYtwfI2GK/nc7TH8Lb/6anpxM0Cbu4+s5HaSEcWAOpP9gDzW9rM7tD895Vl5qie2lBOzGUoeEmNDQUNzc3MjIyHNozMjJo1qzZ755bWFjIRx99xHPPPfe7x3l5eeHl5XXRtYo0doeOF/Fp8iE+TT7EoeMnK9vbRjThloQYbugRTWgTJ/m7lp9hH0vz87yqSyieTaDnHZD4F/tMqLpkMoF/hP0Wf3lVu9UKuWlVl7YyKsJP9i4ozbcPzD20wfG5fEMdA09EJ/sgZu+LGFNoKYPDG6vGzRxcD1bHVaEJ71TVM9OyL3g1/EVcpfEwNNx4enrSq1cvli1bxg033ADYBxQvW7aM8ePH/+65n3zyCSUlJfzpT3+qh0pFGqfiMgvf/prOxz8fZPXeY5yafuDv7c713aO4uVcMXZsHOs9WB+lb7b00Wz6p2uwwsIU90PS8HbwDja3PbLYHq6BYaHdNVbulzL64Xea203p7tkHOPijKhv0r7bfTBcacdmmrYgZXaFvwOMM+Wzabvefq1LiZ/avsYeq3z3cqzMRdZp/2LtJAGX5ZKikpiTFjxpCQkECfPn2YMWMGhYWFjB07FoA77riD6Ohopk2b5nDevHnzuOGGGwgJMXZzLhFXY7PZ+OVQLh//fJBFm4+QX1xe+diA1qHcnNCcoZ2aOc+ielarfSDvmln2XohTmveBvg9A++ENfwCvm0fFJan2wI1V7aVFFeN5fjOIOf8I5B6033b/r+p4k9k+YLlyXZ4wSFtn/7kUOPag4xNkDzGnpmgHt9K4GXEahv+NvvXWW8nKymLy5Mmkp6fTvXt3lixZUjnIOC0tDbPZ8dr9zp07+emnn/jf//53pqcUkQuQXVDCl5sO88nPh9iZUfW/9uZBPvyxV3Nu6tmcmGAnWn+ktAg2f2hfdO/YbnubyQ06/sE+niamt7H11QZPX4juab+drijHcRBz5nbI+NW+lcGx3fbb9t+sJu/uDS37VY2badbV3pMk4oQMX+emvmmdG5Eq5RYrP+7M4pPkgyzbnkl5xZo0Xu5mruncjFsSYrikVYhzbUqZdxTWz4Xkt+0zksC+hH+vMdDnL9C0kU4osNkgP716D09UT/sU7eZ9znzJSqSBcJp1bkTEGHsyC/gk+SCfbzxM1mk7bneLacotCc25rmsUgT5OsCbN6Y6k2MfTbP28avBrUCwk3g89RmvAq8kEAZH2W+srjK5GpE4p3Ig0EvnFZSz+5Sgf/3yQjWknKttD/Dzta9IkxNA2wskCgNUCu5bYx9McWFXV3qKffTxNu2FgdpKxQSJSaxRuRFyYzWZj3b4c+5o0W9I5WWbf08fNbOLyduHcnNCcwe3D8XCGNWlOV1IAKQvsPTXH99nbzO72FYMveaD6GBQRaVQUbkRc0JETJ/ks+RCfJB8iLadqX5/4MD9uSYhhRM9owv2dcHxF7iFY9yZs/DcU59rbvJtCwljofQ8ERhtanog0DAo3Ii6iuMzC0m0ZfPzzQX7ak125Jk0TL3eGd4vk5oQYesQ0dZ41aU53KBnWzoJfv6zaUTo4Hi65H7rfBp7n3jRXRBoPhRsRJ2az2fj1SB4f/3yQr1KOkHuyahXZS1oFc0tCDFd3boavpxP+VbdaYMd/7eNpDq6rao+91L7fU5urNFVZRM7ICf/FE5GcwlL7mjTJh9h+tGqn+6hAb/7Yqzl/7BVDixAnWpPmdMV5sOk9WDcHTqTZ28we0OWP9vE0kV2NrU9EGjyFGxEnUW6xsnJ3Np8kH2TptgzKLPbrTp7uZoZ2asYtCc3pFx+KmzOtSXO64wcqxtO8W7X0v08w9P4z9L4b/H9/vzkRkVMUbkQauLRjRXy0IY3PNh4iI69qTZou0YHcktCcP3SLJtDXydakOcVms2/KuHYWbP8P2Ow7jBPazj6epttI8PAxtkYRcToKNyIN1NbDucxZvpevtxylYuFggnw9GNGjOTcnNKdDpBOvsG0pg21f2adyH06uam91uX08TfxgjacRkQumcCPSgNhsNtbsPcbs5XtZuTu7sv2ytmGM6h3DFR0i8HR34g/9kyfs07jXzYW8Q/Y2Ny/oerN9PE1EJ0PLExHXoHAj0gBYrDb+92s6s5fv5ZdD9vVb3MwmhneN5C8D4523l8Zmg+P7Yf9K2LcCdnwNZYX2x/zC7GNpEv5s351aRKSWKNyIGKik3MLnGw8zd0Uq+7LtH/reHmZuTYjh7ktbOdcu3KfkHoJ9K6sCTe5Bx8fDO9p7abrcrI0aRaROKNyIGCC/uIwP1qUx/6d9ZFZsXBno48GYvi0Z0y+WkCZeBldYA/kZVUFm/0rISXV83OwOzXvb16eJvxxa9LVv4igiUkcUbkTqUWZ+MW+v2s/7aw+QX1wOQGSgN38eEMeoPi3w83KCv5JFORVhpiLQZO90fNxkhqgeEHeZPdC0uEQrCItIvXKCf0lFnN/+7ELmrkzl0+RDlJbbpzu3Dm/CfQPj+UO3qIY9SPjkCTiwuirQZGz5zQEmaNalKsy07AvegUZUKiICKNyI1Kmth3OZvXwv35w2nbtni6bcNzCeIR0iMDfEBfdKCiBtLexbbg80RzdXrT9zSlgHe5iJuxRa9gffYGNqFRE5A4UbkVpms9lYvfcYc34znfvydmHcP6g1vWODGtbmlWUn7Xs3nbrMdGQjWMsdjwlpbe+VOdU7o9lNItKAKdyI1BKL1ca3v6Yz5zfTuf/QLYq/DGxF+2YNZDp3eQkc+rnqMtOh9WApdTymaYuKIFPROxMQZUytIiIXQOFG5CKdbTr3yN4t+POAOOOnc1vK4cimqstMaeug/KTjMf5R9hBzqmcmqKUxtYqI1AKFG5ELlFdcxoJ1acz7aR9Zp0/n7hfLmL4tjZvObbVA+i9Va80cWA2lBY7H+IVVXGa6FOIGQnArTc8WEZehcCNSQ5n5xcz/aT8frD1AfknVdO67L23FyN4x9T+d22qFrO328TL7VsKBn6A41/EYnyCIHVB1mSmsvcKMiLgshRuR87Q/u5A3V6Ty2caq6dxtwpvwl/qezm2zQfZu2L+iYuG8n6DomOMxXgHQsl/VZaaIztqIUkQaDYUbkXPYcsi+O/c3Wx2nc98/qDVXtA+v++ncNhsc33falgYroSDd8RgPX/vKv3GX2ntnIruBm/56i0jjpH/9RM7g1HTu2T/u5ac9VdO5B7cP576B8XU7nbsgyz4A+PTbb8OMmxfE9LGPl4m7FKJ6grtn3dQjIuJkFG5ETmOx2liy1T6de8vhepjOXZQDR1NOCzIp1TeaBDB7QPOEqrVmmvfWppMiImehcCMCFJedms69l/3HioA6mM5dnPebILMJju8/w4EmCG1j358pqqf9a7Mu4OmEO4SLiBhA4UYatbziMj5Ym8b8VVXTuZv6enBH34uczl1aCEd/cQwyx3af+djgVhVBpuLWrCt4N5AF/0REnJDCjTRKmXnFzF/lOJ07KtCbP1/IdO6yYsjYag8whzfav2bvrL4fE0BgC4jqbg8x0T3tA399gmrnTYmICKBwI43MvuxC5q5I5bPkQ5RaqqZz3zcwnj90j8LD7RzTpctLIfNXxx6ZzO3V92IC+6q/p/fIRHUHv9Daf1MiIuJA4UYahV8OnaiYzp2OrWI6d6+WQdw/MJ7BZ5vObSmHrB2nBZmNkPFr9X2YAHxD7T0xp4cZ/2Z1+6ZEROSMFG7EZdlsNlbtOcbs5XtYtadqkbvB7cO5f1A8vWODqw62WuwL453eI5O+pfoeTGC/jOTQI9MDAqK14q+ISAOhcCMuKTOvmPELNrF+fw7wm+nc4U3si+Jt+b4qyBzdXH3/JbCv9BvZzTHIBMUqyIiINGAKN+Jyfjl0gnvfTSY9rxhvDxP3dfXk9pY5hOR+Dt9ugiOboSS3+okeftWDTHArbVsgIuJkFG7EpSzafIT/+2QzYZZ03vL/ksFum3H79Tj8+psD3b3ta8ecHmRC24LZzZC6RUSk9ijciEuwWm28snQn//5hC4+4f8XdXkvwKCuDMuyr+0Z0qpp+HdXDviu2m4fRZYuISB1QuBGnV1BSTtJHyQTv+pgfvD4mzJRnfyBuIAyaaA807he4GJ+IiDgdhRtxagdzipg5bx6P5s+lg0eavTGkNVz1N2h7tQb+iog0Qgo34rRSUn7m+JcTeJENYIZyzwDcL58Ive/WDtkiIo2Ywo04n5PH2bHwaTruW4CnyYIFM8Xdx+J31STwDT73+SIi4tIUbsR5WMqx/Dyf4v/9jfaWXDDBr36XED/6VfyiOhpdnYiINBAKN+Icdn+HZcmTuB3biR+wyxrNjq4TGH7T7Zg0rkZERE6jcCMNW9ZO+PYp2LMUNyDH1oTXbbfS9+Yk/tCludHViYhIA6RwIw1TUQ78OA02zAObhTKbG+9YhvKp323MuHMgHSIDjK5QREQaKIUbaVjKS2HDW7D8RSi2b5HwrSWBaeWjCI/txILRPQlpojVrRETk7BRupGGw2WDnN/C/SZCzF4DDXq15LP9W1lg7MapPDM/+oTOe7trnSUREfp/CjRgvfSt8+yTsWw6AxTeMOW6jeCWrDyazG88M78CYfrEaOCwiIudF4UaMU5AJ3/8NNr0HNiu4eZHZ+W5GbutHao6JQB8PZt3WkwFtQo2uVEREnIjCjdS/smJYNxtWvAKl+fa2TiP4Lnoc47/JprjMSnyYH/8a05u4UD9jaxUREaejcCP1x2aDbV/B0slw4oC9LaoH1qum8uquEF5ftAeAQe3C+OeoHgR4a9duERGpOYUbqR9HNsGSJyFttf2+fyRcMYXC9jeR9MkvfPurPdjce1krnri6PW5mja8REZELo3AjdSvvKCx7DjZ/CNjA3Qf6Pwz9H+JggYl75qxlR3o+nm5mpt7YhT/20sJ8IiJycRRupG6UFsGamfDTq1BWZG/reitcMQUCo1m/L4f73k8mp7CU0CZevHl7L3q1DDK2ZhERcQkKN1K7bDbY8il89wzkHbK3Ne8DV/8dmvcC4KP1aTz91VbKLDY6Rwcw9/YEopr6GFeziIi4FIUbqT0HN8CSCXD4Z/v9wBi48lnodCOYTJRbrPxt8XbeWb0fgGu7RvKPP3bDx9PNuJpFRMTlKNzIxTtx0N5Ts/VT+30PP7g0CfqOAw97j0xuURnjFmzkpz3ZAPz1yraMH9xaC/OJiEitU7iRC1dSAKtmwOrXobwYMEGP0TD4afBvVnnYnswC7v73BvYfK8LX043pt3Tn6s7Nzvq0IiIiF0PhRmrOarXPflr2HBSk29taDoCrp0JkN4dDf9iZyUMLNpFfUk50Ux/euiOBjlHa0VtEROqOwo3UzP5V8O1EOLrZfj8oDq56HtpfB6ddYrLZbPxr5T6mfbMdqw36xAbzxp96EqodvUVEpI4p3Mj5ydlnX1l4+yL7fa8AuOz/IPEv4O4YWErKLTz1xVY+TbbPlhrZO4bnrteO3iIiUj8UbuT3FefByn/A2tlgKQWTGXrdCYOehCZh1Q7PzC/mvveS2Zh2ArMJnr6uI3dqR28REalHCjdyZlYLbHzXvmt3kX2GE60uh6FTIaLjGU/ZejiXe979maO5xQR4uzNrdE8ubVM9AImIiNQlhRupLvVH+PYpyNhqvx/SBoa+AG2uchhXc7rFvxzlr5+kUFxmpVWYH/+6I4FWYU3qr2YREZEKhg+CmDVrFrGxsXh7e5OYmMj69et/9/gTJ04wbtw4IiMj8fLyom3btnz99df1VK2LO5EGC2+Hd6+3BxvvpnD1i/DAGmg79IzBxmq1MX3pLsYt2EhxmZWBbcP44oH+CjYiImIYQ3tuFi5cSFJSEnPmzCExMZEZM2YwdOhQdu7cSXh4eLXjS0tLufLKKwkPD+fTTz8lOjqaAwcO0LRp0/ov3pWUFdvXqln5CpSfBJMb9L4bBk0A3+CznlZYUs5fP97Mkl/t08HvHhDHxGEdtKO3iIgYymSz2WxGvXhiYiK9e/dm5syZAFitVmJiYnjwwQeZMGFCtePnzJnDyy+/zI4dO/Dw8Lig18zLyyMwMJDc3FwCArTeCjuXwJIn4Ph++/2WA2DYSxDR6XdPO3S8iLv//XPljt4vjOjMzQkxdV+viIg0SjX5/DbsslRpaSnJyckMGTKkqhizmSFDhrBmzZoznrNo0SL69u3LuHHjiIiIoHPnzkydOhWLxXLW1ykpKSEvL8/hJsCxvfDBzfDhrfZg4x8Ff5wPd/73nMFmw/4crp+5ih3p+YQ28eTDexMVbEREpMEw7LJUdnY2FouFiIgIh/aIiAh27NhxxnNSU1P5/vvvGT16NF9//TV79uzhgQceoKysjClTppzxnGnTpvHss8/Wev1Oq7TQfvlp9ev2qd1mD+g3Hi59DLzOPU5m4YY0Jn1p39G7Y2QAb41JIFo7eouISAPiVLOlrFYr4eHhzJ07Fzc3N3r16sXhw4d5+eWXzxpuJk6cSFJSUuX9vLw8YmIaYS+DzQbbvrTPgso7bG9rPcQ+YDi09TlPL7dYeeHr7by9aj8A13aJ5OWbu+Lr6VR/hEREpBEw7JMpNDQUNzc3MjIyHNozMjJo1uzMmypGRkbi4eGBm5tbZVuHDh1IT0+ntLQUT0/Paud4eXnh5dXIl/zP3AHf/B/sW2G/37QFXP13aDfsrFO7T5dbVMb4Dzeycrd9vZtHh7TloSu0o7eIiDRMho258fT0pFevXixbtqyyzWq1smzZMvr27XvGc/r378+ePXuwWq2Vbbt27SIyMvKMwabRK86FJU/CnP72YOPubV9ZeNx6aH/teQWbvVkFjHhjFSt3Z+Pj4cbs0T15eEgbBRsREWmwDF3nJikpibfeeot///vfbN++nfvvv5/CwkLGjh0LwB133MHEiRMrj7///vvJycnh4YcfZteuXSxevJipU6cybtw4o95Cw2S1QsqH8HoCrJ0F1nL7xpbj1sOgJ8Dj/MbILN+VxQ2zVpGaXUh0Ux8+vb8v13SJrOPiRURELo6hAyZuvfVWsrKymDx5Munp6XTv3p0lS5ZUDjJOS0vDbK7KXzExMXz77bc8+uijdO3alejoaB5++GGeeOIJo95Cw3N0M3z9f3Bwnf1+SGu45kX7+JrzZLPZmPfTPqZ+bd/RO6FlEHNu76UdvUVExCkYus6NEVx2nZuiHPj+efj5bcAGHn4w8HG45AFwP/9LdjabjSe/2MKH6w8CcEtCc56/oTNe7m7nOFNERKTu1OTzW1NdnJ3VAhv/Dcueg5PH7W1dboYrn4OAqBo/3Y87s/hw/UHMJnjq2o7c1V87eouIiHNRuHFmB9fD14/ZL0UBhHeyry4cO+CCns5mszHzhz0A/HlAHH8eEFdblYqIiNQbhRtnVJAJ3z0DKR/Y73sFwuCnIOHP4Hbhv9J1+3JIPnAcTzcz91zaqnZqFRERqWcKN87EUgbr34Ifp0FJxTYSPW6HK6ZAk7CLfvpZFb02Nyc0JzzA+6KfT0RExAgKN85i3wr4+nHI2m6/H9UDhv0DmifUytNvPniClbuzcTObuG9gfK08p4iIiBEUbhq63MPwv0nw6+f2+z7BMOQZe4+NufaWKXrjR3uvzfXdoogJ9q215xUREalvCjcNVXkJrJkJK/4BZUVgMtvH1Fz+JPgG1+pL7crI59tfMzCZ4IHL1WsjIiLOTeGmIdq9FL55AnL22u+36AvDXoZmXerk5Wb/aH+doR2b0Trcv05eQ0REpL4o3DQkOfvg2ydh59f2+00i4Kq/2detqaO1ZtKOFbFo8xEAxl1+7t3BRUREGjqFm4agtAhWzYCfZoClBMzucMn9cNnj4F23qyjPXr4Xi9XGwLZhdGkeWKevJSIiUh8Uboxks8H2/9h7a3Lt2x3QahBc8xKEtavzl0/PLeaz5EOAem1ERMR1KNwYJWsXfPM4pP5gvx8YA0NfgA5/qLNLUL/11spUSi1W+sQG0yeudgcpi4iIGEXhpr6V5MPyl2DtG2AtBzcv6P8wDHgUPOtvCnZOYSkL1qUBmiElIiKuReGmvthssOUT+N/TUJBub2t7DVw9FYLrf6uDt1ft42SZhc7RAQxse/GrG4uI/B6LxUJZWZnRZUgD5+HhgZub20U/j8JNfUjfYl9dOG21/X5wK7j6RWh7lSHl5BeX8c7q/QCMG9Rau36LSJ0qKCjg0KFD2Gw2o0uRBs5kMtG8eXOaNGlyUc+jcFOXTh6HH6bChn+BzQoevnDZY9B3PLh7GVbWe2sPkF9cTnyYH0M7NTOsDhFxfRaLhUOHDuHr60tYWJj+MyVnZbPZyMrK4tChQ7Rp0+aienAUbuqC1Qop79t37i46Zm/rNMK+Zk1gc0NLO1lqYd7KfQA8MKg1ZrP+oRGRulNWVobNZiMsLAwfHx+jy5EGLiwsjP3791NWVqZw06AcSoavH4MjG+33w9rbp3a3GmhsXRUWbkjjWGEpzYN8+EP3KKPLEZFGQj02cj5q68+Jwk1tKcy299Rses9+3ysABk2EPveAm4ehpZ1SWm5l7opUAP4yMB4Pt9rbeFNERKShULipLfuWVwWbbrfZd+72jzC0pN/6ctNhjuQWE+bvxc29jL08JiIiUlcUbmpLpxvhwBr7PlAtEo2uphqL1cbs5fYNMu+5NA5vj4ufaiciItIQKdzUFpMJrv2H0VWc1ddbjrIvu5BAHw9GJ7Y0uhwREZE6o0EXjYDNZmPWD3sAGNs/Fj8vZVoREWejRRDPn8JNI/D9jkx2pOfj5+nGnf1ijS5HRBoxm81GUWm5IbeaLiK4ZMkSBgwYQNOmTQkJCeG6665j7969lY8fOnSIUaNGERwcjJ+fHwkJCaxbt67y8f/85z/07t0bb29vQkNDGTFiROVjJpOJL7/80uH1mjZtyjvvvAPA/v37MZlMLFy4kIEDB+Lt7c0HH3zAsWPHGDVqFNHR0fj6+tKlSxc+/PBDh+exWq289NJLtG7dGi8vL1q0aMELL7wAwODBgxk/frzD8VlZWXh6erJs2bIa/XwaMv0X3sXZbDZmVvTa/KlvS5r6ehpckYg0ZifLLHSc/K0hr73tuaH4ep7/x15hYSFJSUl07dqVgoICJk+ezIgRI0hJSaGoqIiBAwcSHR3NokWLaNasGRs3bsRqtQKwePFiRowYwVNPPcW7775LaWkpX3/9dY1rnjBhAq+88go9evTA29ub4uJievXqxRNPPEFAQACLFy/m9ttvJz4+nj59+gAwceJE3nrrLV599VUGDBjA0aNH2bFjBwB3330348eP55VXXsHLy76Y7Pvvv090dDSDBw+ucX0NlcKNi1uTeoxNaSfwdDfz5wFxRpcjIuI0brrpJof78+fPJywsjG3btrF69WqysrLYsGEDwcHBALRu3bry2BdeeIGRI0fy7LPPVrZ169atxjU88sgj3HjjjQ5tjz32WOX3Dz74IN9++y0ff/wxffr0IT8/n9dee42ZM2cyZswYAOLj4xkwYAAAN954I+PHj+err77illtuAeCdd97hzjvvdKm1iBRuXNypsTYje8cQ7u9tcDUi0tj5eLix7bmhhr12TezevZvJkyezbt06srOzK3tl0tLSSElJoUePHpXB5rdSUlK45557LrrmhIQEh/sWi4WpU6fy8ccfc/jwYUpLSykpKcHX1xeA7du3U1JSwhVXXHHG5/P29ub2229n/vz53HLLLWzcuJGtW7eyaNGii661IVG4cWGb0o6zas8x3M0m7r2s/nceFxH5LZPJVKNLQ0YaPnw4LVu25K233iIqKgqr1Urnzp0pLS0951YS53rcZDJVGwN0pgHDfn5+DvdffvllXnvtNWbMmEGXLl3w8/PjkUceobS09LxeF+yXprp3786hQ4d4++23GTx4MC1butYsWg0odmGzfrAPfLuhRzTNg3wNrkZExHkcO3aMnTt3MmnSJK644go6dOjA8ePHKx/v2rUrKSkp5OTknPH8rl27/u4A3bCwMI4ePVp5f/fu3RQVFZ2zrlWrVnH99dfzpz/9iW7dutGqVSt27dpV+XibNm3w8fH53dfu0qULCQkJvPXWWyxYsIC77rrrnK/rbBRuXNSO9Dy+256ByQT3D4o3uhwREacSFBRESEgIc+fOZc+ePXz//fckJSVVPj5q1CiaNWvGDTfcwKpVq0hNTeWzzz5jzZo1AEyZMoUPP/yQKVOmsH37drZs2cKLL75Yef7gwYOZOXMmmzZt4ueff+a+++7Dw+PcW/W0adOGpUuXsnr1arZv385f/vIXMjIyKh/39vbmiSee4PHHH+fdd99l7969rF27lnnz5jk8z913383f//53bDabwywuV6Fw46LeqOi1GdY5kviwJgZXIyLiXMxmMx999BHJycl07tyZRx99lJdffrnycU9PT/73v/8RHh7OsGHD6NKlC3//+98rd7IeNGgQn3zyCYsWLaJ79+4MHjyY9evXV57/yiuvEBMTw6WXXsptt93GY489Vjlu5vdMmjSJnj17MnToUAYNGlQZsE739NNP89e//pXJkyfToUMHbr31VjIzMx2OGTVqFO7u7owaNQpvb9cbj2my1XTiv5PLy8sjMDCQ3NxcAgICjC6nTuzPLmTwKz9itcF/HxxA5+hAo0sSkUaquLiYffv2ERcX55Ifos5q//79xMfHs2HDBnr27Gl0OZV+789LTT6/nWNUl9TInOV7sdrg8nZhCjYiIlKprKyMY8eOMWnSJC655JIGFWxqky5LuZgjJ07y2cZDAIy7vPU5jhYRkcZk1apVREZGsmHDBubMmWN0OXVGPTcu5q2VqZRZbCTGBZMQe+b1F0REpHEaNGhQjbehcEbquXEh2QUlfLg+DVCvjYiINF4KNy7k7VX7KC6z0rV5IJe2CTW6HBEREUMo3LiI3JNlvLv6AAAPDGrtUnuEiIiI1ITCjYt4f+0B8kvKaRvRhKs6RhhdjoiIiGEUblxAUWk5837aB9h7bcxm9dqIiEjjpXDjAj5af5CcwlJaBPtyXddIo8sRERExlMKNkysptzB3RSoA9w2Mx91Nv1IRkYYgNjaWGTNmGF1Go6RPQif3xcbDpOcVExHgxU29oo0uR0RExHAKN06s3GJl9nL7Bpn3XNoKL3c3gysSERFXYLFYsFqtRpdxwRRunNjiLUc5cKyIIF8PbktsYXQ5IiLnZrNBaaExtxqszDt37lyioqKqfcBff/313HXXXezdu5frr7+eiIgImjRpQu/evfnuu+8u+Mcyffp0unTpgp+fHzExMTzwwAMUFBQ4HLNq1SoGDRqEr68vQUFBDB06lOPHjwNgtVp56aWXaN26NV5eXrRo0YIXXngBgB9//BGTycSJEycqnyslJQWTycT+/fsBeOedd2jatCmLFi2iY8eOeHl5kZaWxoYNG7jyyisJDQ0lMDCQgQMHsnHjRoe6Tpw4wV/+8hciIiLw9vamc+fO/Pe//6WwsJCAgAA+/fRTh+O//PJL/Pz8yM/Pv+Cf17lo+wUnZbXaeOMHe6/NXf3j8PXUr1JEnEBZEUyNMua1nzwCnn7ndejNN9/Mgw8+yA8//MAVV1wBQE5ODkuWLOHrr7+moKCAYcOG8cILL+Dl5cW7777L8OHD2blzJy1a1Pw/m2azmX/+85/ExcWRmprKAw88wOOPP84bb7wB2MPIFVdcwV133cVrr72Gu7s7P/zwAxaLBYCJEyfy1ltv8eqrrzJgwACOHj3Kjh07alRDUVERL774Iv/6178ICQkhPDyc1NRUxowZw+uvv47NZuOVV15h2LBh7N69G39/f6xWK9dccw35+fm8//77xMfHs23bNtzc3PDz82PkyJG8/fbb/PGPf6x8nVP3/f39a/xzOl/6RHRS323PYGdGPk283Lmjb6zR5YiIuJSgoCCuueYaFixYUBluPv30U0JDQ7n88ssxm81069at8vjnn3+eL774gkWLFjF+/Pgav94jjzxS+X1sbCx/+9vfuO+++yrDzUsvvURCQkLlfYBOnToBkJ+fz2uvvcbMmTMZM2YMAPHx8QwYMKBGNZSVlfHGG284vK/Bgwc7HDN37lyaNm3K8uXLue666/juu+9Yv34927dvp23btgC0atWq8vi7776bfv36cfToUSIjI8nMzOTrr7++qF6u86Fw44RsNhuzfrT32tzetyWBvh4GVyQicp48fO09KEa9dg2MHj2ae+65hzfeeAMvLy8++OADRo4cidlspqCggGeeeYbFixdz9OhRysvLOXnyJGlpaRdU2nfffce0adPYsWMHeXl5lJeXU1xcTFFREb6+vqSkpHDzzTef8dzt27dTUlJSGcIulKenJ127dnVoy8jIYNKkSfz4449kZmZisVgoKiqqfJ8pKSk0b968Mtj8Vp8+fejUqRP//ve/mTBhAu+//z4tW7bksssuu6haz0VjbpzQqj3H2HzwBF7uZu7qH2d0OSIi589ksl8aMuJWw21phg8fjs1mY/HixRw8eJCVK1cyevRoAB577DG++OILpk6dysqVK0lJSaFLly6UlpbW+Eeyf/9+rrvuOrp27cpnn31GcnIys2bNAqh8Ph8fn7Oe/3uPgf2SF+CwG3hZWdkZn+e3W/eMGTOGlJQUXnvtNVavXk1KSgohISHnVdcpd999N++88w5gvyQ1duzYOt8iSOHGCc36YQ8Ao/q0IMzfy+BqRERck7e3NzfeeCMffPABH374Ie3ataNnz56AfXDvnXfeyYgRI+jSpQvNmjWrHJxbU8nJyVitVl555RUuueQS2rZty5Ejjr1bXbt2ZdmyZWc8v02bNvj4+Jz18bCwMACOHj1a2ZaSknJeta1atYqHHnqIYcOG0alTJ7y8vMjOznao69ChQ+zateusz/GnP/2JAwcO8M9//pNt27ZVXjqrSwo3Tib5wHHWpB7D3WzinstanfsEERG5YKNHj2bx4sXMnz+/stcG7IHi888/JyUlhc2bN3Pbbbdd8NTp1q1bU1ZWxuuvv05qairvvfcec+bMcThm4sSJbNiwgQceeIBffvmFHTt2MHv2bLKzs/H29uaJJ57g8ccf591332Xv3r2sXbuWefPmVT5/TEwMzzzzDLt372bx4sW88sor51VbmzZteO+999i+fTvr1q1j9OjRDr01AwcO5LLLLuOmm25i6dKl7Nu3j2+++YYlS5ZUHhMUFMSNN97I//3f/3HVVVfRvHnzC/o51YTCjZN5o6LX5sae0UQ3PXd3oIiIXLjBgwcTHBzMzp07ue222yrbp0+fTlBQEP369WP48OEMHTq0slenprp168b06dN58cUX6dy5Mx988AHTpk1zOKZt27b873//Y/PmzfTp04e+ffvy1Vdf4e5uHzr79NNP89e//pXJkyfToUMHbr31VjIzMwHw8PDgww8/ZMeOHXTt2pUXX3yRv/3tb+dV27x58zh+/Dg9e/bk9ttv56GHHiI8PNzhmM8++4zevXszatQoOnbsyOOPP145i+uUP//5z5SWlnLXXXdd0M+opkw2Ww0m/ruAvLw8AgMDyc3NJSAgwOhyamTbkTyG/XMlZhN8lzSQVmFNjC5JROR3FRcXs2/fPuLi4vD29ja6HDHIe++9x6OPPsqRI0fw9PQ863G/9+elJp/fmi3lRN740d5rM6xLpIKNiIg0eEVFRRw9epS///3v/OUvf/ndYFObdFnKSaRmFbB4i30w2LjLWxtcjYiInK8PPviAJk2anPF2aq0aV/XSSy/Rvn17mjVrxsSJE+vtddVz4yRm/7gXmw2uaB9Oh0jnupwmItKY/eEPfyAxMfGMj3l4uPY6Zc888wzPPPNMvb+uwo0TOHziJF9sOgzAuMHqtRERcSb+/v51utWAVKfLUk5g7vK9lFtt9G0VQs8WQUaXIyJSY41s7opcoNr6c6Jw08Bl5Zfw0YaDAIxXr42IOBk3NzeAC1q5VxqfU39OTv25uVC6LNXAzftpHyXlVrrFNKVffIjR5YiI1Ii7uzu+vr5kZWXh4eFRuRWAyG9ZrVaysrLw9fWtXL/nQincNGC5RWW8v/YAAOMvb13ne3GIiNQ2k8lEZGQk+/bt48CBA0aXIw2c2WymRYsWF/15p3DTgP17zX4KSsppF+HPFe3Dz32CiEgD5OnpSZs2bXRpSs7J09OzVnr3FG4aqMKScuav2gfAA5fHYzar10ZEnJfZbNYKxVJvGsTFz1mzZhEbG4u3tzeJiYmsX7/+rMe+8847mEwmh5sr/oX5cH0aJ4rKaBniy7VdIo0uR0RExGkYHm4WLlxIUlISU6ZMYePGjXTr1o2hQ4dWbvh1JgEBARw9erTy5mrXcUvKLcxdkQrA/QPjcXcz/NckIiLiNAz/1Jw+fTr33HMPY8eOpWPHjsyZMwdfX1/mz59/1nNMJhPNmjWrvEVERNRjxXXv0+RDZOaX0CzAmxE9o40uR0RExKkYOuamtLSU5ORkh/0mzGYzQ4YMYc2aNWc9r6CggJYtW2K1WunZsydTp0496/4cJSUllJSUVN7Pzc0F7LuLNkTlFiszv/0Fa0kxt/eKoaSokJJznyYiIuLSTn1un89Cf4aGm+zsbCwWS7Wel4iICHbs2HHGc9q1a8f8+fPp2rUrubm5/OMf/6Bfv378+uuvNG/evNrx06ZN49lnn63WHhMTUztvog6NnwHjjS5CRESkAcnPzycwMPB3j3G62VJ9+/alb9++lff79etHhw4dePPNN3n++eerHT9x4kSSkpIq71utVnJycggJCan1dWPy8vKIiYnh4MGDBARoc0uj6ffRsOj30bDo99Hw6Hfy+2w2G/n5+URFRZ3zWEPDTWhoKG5ubmRkZDi0Z2Rk0KxZs/N6Dg8PD3r06MGePXvO+LiXlxdeXl4ObU2bNr2ges9XQECA/mA2IPp9NCz6fTQs+n00PPqdnN25emxOMXRAsaenJ7169WLZsmWVbVarlWXLljn0zvwei8XCli1biIzUdGkRERFpAJelkpKSGDNmDAkJCfTp04cZM2ZQWFjI2LFjAbjjjjuIjo5m2rRpADz33HNccskltG7dmhMnTvDyyy9z4MAB7r77biPfhoiIiDQQhoebW2+9laysLCZPnkx6ejrdu3dnyZIllYOM09LSHJZiPn78OPfccw/p6ekEBQXRq1cvVq9eTceOHY16C5W8vLyYMmVKtctgYgz9PhoW/T4aFv0+Gh79TmqPyXY+c6pEREREnIThi/iJiIiI1CaFGxEREXEpCjciIiLiUhRuRERExKUo3NSSWbNmERsbi7e3N4mJiaxfv97okhqtadOm0bt3b/z9/QkPD+eGG25g586dRpclFf7+979jMpl45JFHjC6l0Tp8+DB/+tOfCAkJwcfHhy5duvDzzz8bXVajZLFYePrpp4mLi8PHx4f4+Hief/7589o/Sc5O4aYWLFy4kKSkJKZMmcLGjRvp1q0bQ4cOJTMz0+jSGqXly5czbtw41q5dy9KlSykrK+Oqq66isLDQ6NIavQ0bNvDmm2/StWtXo0tptI4fP07//v3x8PDgm2++Ydu2bbzyyisEBQUZXVqj9OKLLzJ79mxmzpzJ9u3befHFF3nppZd4/fXXjS7NqWkqeC1ITEykd+/ezJw5E7CvshwTE8ODDz7IhAkTDK5OsrKyCA8PZ/ny5Vx22WVGl9NoFRQU0LNnT9544w3+9re/0b17d2bMmGF0WY3OhAkTWLVqFStXrjS6FAGuu+46IiIimDdvXmXbTTfdhI+PD++//76BlTk39dxcpNLSUpKTkxkyZEhlm9lsZsiQIaxZs8bAyuSU3NxcAIKDgw2upHEbN24c1157rcPfFal/ixYtIiEhgZtvvpnw8HB69OjBW2+9ZXRZjVa/fv1YtmwZu3btAmDz5s389NNPXHPNNQZX5twMX6HY2WVnZ2OxWCpXVD4lIiKCHTt2GFSVnGK1WnnkkUfo378/nTt3NrqcRuujjz5i48aNbNiwwehSGr3U1FRmz55NUlISTz75JBs2bOChhx7C09OTMWPGGF1eozNhwgTy8vJo3749bm5uWCwWXnjhBUaPHm10aU5N4UZc2rhx49i6dSs//fST0aU0WgcPHuThhx9m6dKleHt7G11Oo2e1WklISGDq1KkA9OjRg61btzJnzhyFGwN8/PHHfPDBByxYsIBOnTqRkpLCI488QlRUlH4fF0Hh5iKFhobi5uZGRkaGQ3tGRgbNmjUzqCoBGD9+PP/9739ZsWIFzZs3N7qcRis5OZnMzEx69uxZ2WaxWFixYgUzZ86kpKQENzc3AytsXCIjI6vtxdehQwc+++wzgypq3P7v//6PCRMmMHLkSAC6dOnCgQMHmDZtmsLNRdCYm4vk6elJr169WLZsWWWb1Wpl2bJl9O3b18DKGi+bzcb48eP54osv+P7774mLizO6pEbtiiuuYMuWLaSkpFTeEhISGD16NCkpKQo29ax///7VlkbYtWsXLVu2NKiixq2oqMhhc2gANzc3rFarQRW5BvXc1IKkpCTGjBlDQkICffr0YcaMGRQWFjJ27FijS2uUxo0bx4IFC/jqq6/w9/cnPT0dgMDAQHx8fAyurvHx9/evNt7Jz8+PkJAQjYMywKOPPkq/fv2YOnUqt9xyC+vXr2fu3LnMnTvX6NIapeHDh/PCCy/QokULOnXqxKZNm5g+fTp33XWX0aU5NU0FryUzZ87k5ZdfJj09ne7du/PPf/6TxMREo8tqlEwm0xnb3377be688876LUbOaNCgQZoKbqD//ve/TJw4kd27dxMXF0dSUhL33HOP0WU1Svn5+Tz99NN88cUXZGZmEhUVxahRo5g8eTKenp5Gl+e0FG5ERETEpWjMjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZeicCMiIiIuReFGRBo9k8nEl19+aXQZIlJLFG5ExFB33nknJpOp2u3qq682ujQRcVLaW0pEDHf11Vfz9ttvO7R5eXkZVI2IODv13IiI4by8vGjWrJnDLSgoCLBfMpo9ezbXXHMNPj4+tGrVik8//dTh/C1btjB48GB8fHwICQnh3nvvpaCgwOGY+fPn06lTJ7y8vIiMjGT8+PEOj2dnZzNixAh8fX1p06YNixYtqts3LSJ1RuFGRBq8p59+mptuuonNmzczevRoRo4cyfbt2wEoLCxk6NChBAUFsWHDBj755BO+++47h/Aye/Zsxo0bx7333suWLVtYtGgRrVu3dniNZ599lltuuYVffvmFYcOGMXr0aHJycur1fYpILbGJiBhozJgxNjc3N5ufn5/D7YUXXrDZbDYbYLvvvvsczklMTLTdf//9NpvNZps7d64tKCjIVlBQUPn44sWLbWaz2Zaenm6z2Wy2qKgo21NPPXXWGgDbpEmTKu8XFBTYANs333xTa+9TROqPxtyIiOEuv/xyZs+e7dAWHBxc+X3fvn0dHuvbty8pKSkAbN++nW7duuHn51f5eP/+/bFarezcuROTycSRI0e44oorfreGrl27Vn7v5+dHQEAAmZmZF/qWRMRACjciYjg/P79ql4lqi4+Pz3kd5+Hh4XDfZDJhtVrroiQRqWMacyMiDd7atWur3e/QoQMAHTp0YPPmzRQWFlY+vmrVKsxmM+3atcPf35/Y2FiWLVtWrzWLiHHUcyMihispKSE9Pd2hzd3dndDQUAA++eQTEhISGDBgAB988AHr169n3rx5AIwePZopU6YwZswYnnnmGbKysnjwwQe5/fbbiYiIAOCZZ57hvvvuIzw8nGuuuYb8/HxWrVrFgw8+WL9vVETqhcKNiBhuyZIlREZGOrS1a9eOHTt2APaZTB999BEPPPAAkZGRfPjhh3Ts2BEAX19fvv32Wx5++GF69+6Nr68vN910E9OnT698rjFjxlBcXMyrr77KY489RmhoKH/84x/r7w2KSL0y2Ww2m9FFiIicjclk4osvvuCGG24wuhQRcRIacyMiIiIuReFGREREXIrG3IhIg6Yr5yJSU+q5EREREZeicCMiIiIuReFGREREXIrCjYiIiLgUhRsRERFxKQo3IiIi4lIUbkRERMSlKNyIiIiIS1G4EREREZfy/zVfMeRyTfu+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(history.history['accuracy'], label='accuracy')\n", "plt.plot(history.history['val_accuracy'], label = 'val_accuracy')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Accuracy')\n", "plt.ylim([0.5, 1])\n", "plt.legend(loc='lower right')\n", "\n", "test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "0LvwaKhtUdOo" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.7121999859809875\n" ] } ], "source": [ "print(test_acc)" ] }, { "cell_type": "markdown", "metadata": { "id": "8cfJ8AR03gT5" }, "source": [ "Your simple CNN has achieved a test accuracy of over 70%. Not bad for a few lines of code! For another CNN style, check out the [TensorFlow 2 quickstart for experts](https://www.tensorflow.org/tutorials/quickstart/advanced) example that uses the Keras subclassing API and `tf.GradientTape`." ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "cnn.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 4 }