
Chapter 6

Decision Tree Learning

6.1 Classification problems in AI
Look at a photograph of an animal and determine if it is a dog, a cat,
or a porcupine. Listen to a recording of a song and recognize if it
is Beethoven, Bach or the Beatles. Analyze regional radar, temper-
ature, barometric and wind reports and decide to carry an umbrella
or not. These are all classification problems. Given vectors of input
data, the output is an element of a small, discrete set, as in {dog, cat,
porcupine} or {yes umbrella, no umbrella}. The input data can be
discrete (as in the color of a pixel) or continuous (the air tempera-
ture).

A classifier is an algorithm that predicts the category of an obser-
vation. We will refer to observations as feature vectors and the cate-
gories as classifications. Feature vectors are comprised of features (also
called explanatory variables or independent variables in other presen-
tations). The classification is sometimes called a response variable or
dependent variable or simply output. We assume there is a function
f (sometimes called a concept) that maps feature vectors to correct
classifications. A classifier outputs classifications based on its own
approximation f̃ to f .

The correctness of f̃ can be measured relative to a test set, T ,
which is a subset of observations from the domain of all possible

59

Chapter 6. Decision Tree Learning

observations. The error rate of f̃ on the test set is the fraction of
x ∈ T for which f(x) ̸= f̃(x).

A classifier learning algorithm is a type of supervised learning al-
gorithm that has access to a training set of correctly classified obser-
vations and builds its own approximation f̃ of the true classification
function f . The hope is that if f̃ exhibits a low error rate on the
training set, then it will also result in a low error rate on any unseen
test set.

There are several models for representing concepts that can be
learned by classifiers. We will study three in this course: decision
trees, perceptrons, and feed-forward neural networks. There are
many other models in the literature such as decision lists, forests,
support vector machines, nearest neighbor and certain types of re-
gression. Each model has strengths and weakness and certain types
of concepts they work well for. Many of the underlying principles
we cover here are shared among all models, though.

6.2 Decision Trees
The decision tree model is familiar to most people even outside of
computer science (see figure)¹. It is a well-known way to formulate
a decision process for determining an outcome based on certain vari-
ables. The variables themselves are the features and the outcome is
the classification.

For example, perhaps you enjoy playing tennis during the year
and on any given day you use the weather to determine if you will
play tennis. You many never play if it is raining or extremely hot
or windy. But if the temperature is mild or slightly warm, you may
decide to play as long as the humidity is low. When it is cool youmay
play even if the humidity is high. You could organize your decision
process into a tree consisting of vertices and labeled directed edges.
Each interior node corresponds to a question you ask (a feature of the
dataset) and each edge corresponds to an answer (a valid value for the
¹image source: http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3.html

60 Patrick White Draft: v 0.81

6.2. Decision Trees

Figure 6.1: A decision tree for approving loans

feature). The leaves of the decision tree are categories corresponding
to your decision: Yes or No.

A decision tree learning algorithm, if given access to a set of
classified observations consisting of weather observations and your
decision about playing tennis, would be able to construct a tree that
accurately determined your decision, based solely on the feature vec-
tors of weather data. How good this tree is would not really be known
until it was tested on some unseen data, so the error rate on a test
set could be determined. It the rate is low, we may conclude the tree
has high prediction value.

You should convince yourself that for any consistent training set,
a decision tree can always be created that has a zero percent error rate
on the training set. (In the most extreme case, every single observa-
tion can correspond to a unique leaf and every outcome is therefore
determined by a single dedicated path in the tree). Such a tree would
be disastrously complex, and most likely useless on any feature vec-
tor not in the training set. Succesful earning algorithms employ Oc-
cam’s Razor: the simpler solution is usually preferable. A large tree

Draft: v 0.81 Patrick White 61

Chapter 6. Decision Tree Learning

with 0% error on the training set may have 50% error on a test set.
But a small, simpler tree might achieve 5% error on both. Since we
can’t know the test set performance beforehand, we’ll use the rule of
thumb that favors small trees over large ones.

Small trees may not always be supported by the data. For ex-
ample your decision to play tennis could be purely random, or de-
termined by a factor not in the tree, such as the time of day or the
availability of your tennis partner. In this case we would probably
conclude that the target concept is not learnable by our model, at
least based on the given feature set.

Exercises
The WillWait? data set is taken from Russel and Norvig’s text and
is a standard data set in learning decision trees. The data set (see
Figure 6.2) consists of 12 observations, 10 categorical features each
and one binary classification: whether to wait at a restaurant or not.
Some of the features are binary, others have 3-4 possible values.

(11) Construct, by hand, a small decision tree that correctly classi-
fies all 12 observations in the dataset. The size of your tree will
be defined simply as the number of nodes in the tree, including
the root and all leaves.

(12) How much smaller can you make your tree if you allow some
classification error in the training set? Is the amount of error
acceptable? Do you think this smaller tree will generalize to
unseen data as well as the larger tree? Or better?

(13) Sketch out a tree that classifies every example using a terrible
algorithm – create a new leaf for each observation. Don’t try to
optimize anything. Complete enough of the tree to convince
yourself this algorithm always works.

62 Patrick White Draft: v 0.81

6.3. Measuring the value of knowledge

Figure 6.2: The WillWait Dataset

(14) Howmany nodes will a tree constructed like the previous prob-
lem contain in the worst case? Let n be the number of obser-
vations and m be the number of features.

6.3 Measuring the value of knowledge
Measuring Information
Alex and Betty want to exchange messages using an alphabet of 8
characters. They will encode their messages in binary. How many
binary bits are required to encode each letter? Clearly 3 will suffice
because 23 = 8 and the 8 different 3-digit binary strings can each
stand for a different letter. A=000, B=001, etc.

Is it possible to use fewer than 3 bits per letter? At first glance
the answer may obviously seem to be “no.” But imagine an extreme
case where all of the words in the language only used two letters: A
and H.Then they could use one bit: A = 0, H = 1 and communicate
perfectly well. Even though there are 8 characters, they are not all
equally prevalent in the language. If we use frequency analysis of

Draft: v 0.81 Patrick White 63

Chapter 6. Decision Tree Learning

words in the language and determine some letters are more common
than others, we can possibly get by with fewer than 3 bits.

Assume that we determine that A is the most frequent letter,
occurring 50% of the time, while B,C,D,E,F,G,H each occur 1

14 of
the time, making up the other half. Let’s devise a scheme that uses
on average fewer than 3 bits per character. By “on average” we mean
that if we encode a message of n letters, it will use fewer than 3n
bits, assuming the letters in the message occur with the frequencies
defined above. (More precisely, we’re computing the expected number
of bits in a letter – to be discussed below).

Since A is the most common, we could try encoding it with only
1 bit, say “0”. The remaining 7 letters can be distinguished using only
3 bits each: B = 001, C = 010, etc. This would reduce the average bits-
per-letter. But there’s a problem: messages are ambiguous. How
would you decode 00100010? is it ACBA, or BABA? Instead we’ll
use four bits for B-H, with high bit 1: B = 1000, C = 1001, etc. Now
when decoding, a “0” signifies an A while a “1” signifies the start of
a 4-bit code. 0010001001 = 0 0 1000 1001 = AABC.

The average bits-per-character, according to the probabilities
given, is

Bavg = 1
2(1) + 7 × 1

14(4) = 5
2 = 2.5.

We can interpret this figure, 2.5 bits, as a consequence of the skewed
probability distribution of the 8 letters. If letters were equally proba-
ble then fully 3 bits are required to communicate each letter. This is
a type of worst-case scenario. There is no reason to prefer any letter
over any other. There is no advantage to knowing the probability
distribution. Every single one of the 3 bits is informative. On the
other extreme, a case where only letter “A” is ever used is a best-case
scenario. Here 0 bits would be required. There is no information
conveyed by knowing the next letter is an “A”, because by knowing
the distribution, that fact is obvious.

The 2.5 bit case is a middle ground. There is a certain advantage
to knowing the distribution beforehand: you can guess the letter will

64 Patrick White Draft: v 0.81

6.3. Measuring the value of knowledge

be A and half the time you’ll be right. The leading bit “0” confirms
your guess. If the letter is not “A”, the leading bit “1” tells you that
you need to see 3 more bits to determine the letter. On average
there’s 2.5 bits of “information” conveyed by knowing the next letter.

This idea of information is formalized in the next section on
entropy.

Information and Entropy
Colloquially, the “entropy” of a system can be described as the
amount of disorder or disarray in the system. Entropy and infor-
mation are closely related. Consider for example a library. If every
book is ordered on the shelves by author and title, then relatively
little information is required to describe the arrangement of books.
A list of titles and authors may suffice, perhaps along with the
position of the shelves. But if somebody comes in and dislodges
each book, throwing them all over the various floors of the library,
then the system is suddenly very hard to describe. Each individual
book will be in a specific position, and orientation, possibly open
to a certain page. Some pages might be bent or ripped. Books may
be intertwined with each other, opened partially, or bent fully back.
The high-entropy arrangement of books is full of information.

These concepts can be applied to probability distributions, as
motivated in the previous section. A uniform distribution, where
each of n events is equally likely, is a high-entropy, high-information
situation because any event could occur with the same probability.
Conveying which event occurs takes log2(n) bits. On the other hand,
a distribution over n elements where only one element has all the
probability is low-entropy, low-information. The outcome is already
known. 0 bits are required to convey the event, because it’s always
the same. (And it just so happens that log2(1) = 0, so a bit of a
pattern emerges).

We’ll define the information of an event with probability p as
simply I(p) = − log2(p). For example an event that has probability
1
8 will have an information value of I(1

8) = − log2(1
8) = 3, in agree-

Draft: v 0.81 Patrick White 65

Chapter 6. Decision Tree Learning

ment with the previous example. An event with probability 1 has
information value 0. An event with probability 2−20 has informa-
tion content 20. Rare events have more information, because they
are less likely, and more “news-worthy” when they occur.

The the Shannon entropy (or just entropy, attributed to Claude
Shannon) is defined as the expected value of the information of a prob-
ability distribution.

h(p1, p2, . . . , pn) = −
n∑

i=1
pi log2(pi)

(Recall that expected value of a random variable is the sum of
the values taken by that random variable, each weighted with its
respective probability. For example, if a fair die is rolled, the expected
value of the square of the value displayed on the die is 1

6(1 + 4 + 9 +
16 + 25 + 36) = 91

6)
Returning to the 8-character alphabet example, the Shannon

entropy of the uniform distribution is

h(1
8 ,

1
8 , . . . ,

1
8) = −8(1

8 log2(1
8)) = 3

while the skewed distribution is

h(1
2 ,

1
14 , . . . ,

1
14) = −(1

2 log2(1
2) + 7

14 log2(1
14) = 2.403

The first value agrees with the 3 bits required. The second is slightly
less than 2.5, suggesting that perhaps a more efficient coding scheme
can be found, if these concepts of entropy and information are truly
related.

In fact they are very related. If we accept the axiom that an
event of probability p takes − log2(p) bits to communicate to some-
one when it occurs, then the definition of entropy given above is
exactly equivalent to the definition of expected number of bits in a let-
ter given above. Of course the number of bits actually transmitted

66 Patrick White Draft: v 0.81

6.4. Decision Tree Learning

depends on the chosen encoding scheme, so the equivalence seems
to only be valid in the optimal (or perhaps limiting) case. The Shan-
non entropy provides a lower bound on the number of bits required
in any such encoding scheme and, sometimes, that bound is achiev-
able.²

Exercises
(15) What is the entropy of the values in the Wait? column of the

WillWait dataset? We will refer to the entropy of the classifi-
cations as simply the entropy of the dataset.

(16) If you know that it is Friday and define a new dataset based
on only the relative rows, what is the entropy of that dataset?
What is the entropy if it is not Friday?

(17) Compute an “average entropy” for the value Friday by averag-
ing the two entropys corresponding to Friday=T and Friday=F
that you found in th previous exercise. Be sure to weight each
probability with its frequency (7/12 of the observations hap-
pen when Friday=F). Howmuch, on average, does the entropy
decrease from the original dataset if you know the value of “Fri-
day”?

(18) Find a value for a feature in which the resulting entropy is 0.
Find a value for a feature in which the resulting entropy is 1.
Find a feature where every value has an entropy of 1.

6.4 Decision Tree Learning
All this talk about information and entropy will be put to use now
in our decision tree learning algorithm. When any decision tree is
²This is the essential content of Shannon’s source coding theorem. Two schemes,

Huffman codes and arithmetic codes, can be shown to be optimally close to the
Shannon bound under certain assumptions.

Draft: v 0.81 Patrick White 67

Chapter 6. Decision Tree Learning

used to classify a previously unseen observation, the initial entropy h0
can be defined as the entropy of the probability distribution over all
the outcomes in the set. As the observation is sifted down through
the tree, the distribution over outcomes changes until eventually a
leaf is reached and the final entropy hf is necessarily 0, because the
sole outcome consistent with the observed features, is known. Since
h0 > 0 for all but trivial problems, the entropy can be assumed to
decrease throughout the path from the root to the leaf of the tree.
A well-constructed tree will make this path, on average, as short as
possible and a reasonable way to do that is to maximize the entropy
loss at each step. Conversely, this can be stated as increasing the
information gain at each step. So, our job in making a decision tree
is to form nodes out of questions whose answers provide the most
information.

We’ll work through an example with the Play_Tennis dataset.

Table 6.1: The Play_Tennis dataset

ID Outlook Temp Humidity Windy Play?
1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rainy mild high false yes
5 rainy cool normal false yes
6 rainy cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes
10 rainy mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rainy mild high true no

68 Patrick White Draft: v 0.81

6.4. Decision Tree Learning

This datasetD has 14 rows, each containing a 4-element feature
vector and a binary classification: yes or no (the IDs are not features.)
These 14 rows contain 9 ‘yes’ classifications and 5 ‘no’ classifications.
We’ll define the entropy of D as the entropy of the frequency distri-
bution of its classifications. So h(D) = h(5

14 , 9
14) = 0.9403. Since

the distribution is slightly skewed, the classification does not contain
1 full bit of information. But it’s pretty close.

Now we define a refinement D|f=v of a dataset D as a subset
of the rows of D in which the feature f has value v. For example
D|temp=hot is the set of rows labeled {1,2,3,13}. The entropy loss of a
refinement of D is defined as the difference in the entropies of the
two datasets:

L(D|f=v) = h(D) − h(D|f=v)

The dataset D′ = D|temp=hot has an entropy of h(2
4 , 2

4) = 1
so the entropy loss of D′ is Lh = −0.0597. (A negative entropy
loss is not a good sign – this piece of information actually gives
you less of an idea of the right classification than no information
at all!). You should verify that D|temp=mild = h(4

6 , 2
6) = 0.9183 and

D|temp=cool = h(3
4 , 1

4) = 0.8113 corresponding to entropy losses of
Lm = 0.0220 and Lc = 0.1290.

Now we have some assumptions to state. In particular, we’re as-
suming this dataset is representative of the underlying concept we’re
hoping to learn and that the frequencies observed here are indicative
of the frequencies we will encounter in the yet-unseen test dataset.
So if 2

7 of the days are cool in the dataset, we assume about 2
7 of the

days will be cool in the test set. Under this fairly plausible assump-
tion we can define the expected entropy loss of the feature “Temp”.

Given any observation at random, the expected entropy loss of
the feature “Temp” is L(temp) = 4

14Lh + 6
14Lm + 4

14Lc = 0.0292.
That is to say, of the 0.9403 bits of information needed to classify
the members of this dataset, the feature “Temp” conveys, on average,
0.0292 bits of information. Is that good? Well it all depends on the
other features. Maybe one of the other 3 is better.

Draft: v 0.81 Patrick White 69

Chapter 6. Decision Tree Learning

Once the expected entropy loss for each feature is computed, the
feature with the maximum entropy loss is selected as the root node
of the decision tree, because this node is expected to give the most
information quickly. This idea the extends immediately to each re-
finement of the dataset. Assume, for example, that Temp is the best
feature. We would make “Temp” the root of the decision tree and
add three edges: hot, mild and cool. Each edge defines a refinement
of D. Recursively apply the procedure to find the best feature on
each of these three subsets of D (omitting of course “Temp”). The
procedure continues until the current refinement has an entropy of
0, meaning all elements are in the same class.

Learning Decision Tree Pseudocode
A recursive implementation of Decision-Tree-Learn is given below.
The function returns a node representing the root of the decision tree.
The decision tree is stored as a directed graph with labeled nodes and
edges. Nodes are labeled with features in the dataset, while edges are
labeled with values corresponding to that feature. In this way, nodes
act as questions and edges act as answers.

While this code is intended to be fairly implementation-
independent, it is assumed that node is an object capable of
maintaining a list of children, as in any standard tree data structure.
These children are stored as a list of (key, value) pairs where the key
is the edge label and the value is the label of the child node.

This code requires a nuber of helper function to work. The code
refers to find-best-feature, entropy and refine. Additionally you need
easy ways to determine all the features in a dataset, all the values in
a feature, and the frequency distribution of classes of a dataset.

Once the tree has been computed, it will be handy to have a
quick way to visualize the tree itself. Although an actual graphical
sketch might be nice, it’s only really feasible for small trees. An
indented list or outline form ismore practical, and easy to implement.
For example, an outline of tree in Figure (???) is

70 Patrick White Draft: v 0.81

6.4. Decision Tree Learning

Algorithm 10 Decision tree learning algorithm
1: function DECISION-TREE-LEARN(D)
2: input: D, a non-empty list of (x⃗, y) where f(x⃗) = y.
3: if entropy(D) == 0 then
4: class = D[0, 1] ▷ the class of the first element in D
5: leaf = node(class, type=’leaf ’)
6: return leaf
7: f = find-best-feature(D)
8: node = node(f , type=’internal’)
9: for each value in feature f do
10: D′ = refine(D, f, value)
11: if D′ is empty then
12: continue
13: else
14: child = Decision-Tree-Learn(D′)
15: add {value : child} to node.children

16: return node

Algorithm 11 Find the feature in a dataset with maximum entropy
loss
1: function FIND-BEST-FEATURE(D)
2: h0 = entropy(D)
3: for each feature f in D do
4: hf = 0
5: for each value v in f do
6: D′ = restrict(D, f, v)
7: pv = len(D′)/len(D)
8: hv = entropy(D′)
9: hf = hf + pv · hv

10: Lf = h0 − hf

11: return f for which Lf is maximum

Draft: v 0.81 Patrick White 71

Chapter 6. Decision Tree Learning

Algorithm 12 Find the entropy of a dataset
1: function ENTROPY(D)
2: classes = set of classifications in D
3: h = 0
4: for each c in classes do
5: fc = number of occurrences of c in D
6: pc = fc/len(D)
7: if pc > 0 then
8: h = h + pc · log2(pc)
9: return −h

* Income Range?

* < 30K

* Criminal Record?

* Yes --> Loan

* No --> No Loan

* 30-70K

* Years in present job?

* < 1 --> No loan

* 1-5

* Makes credit card payments?

* Yes --> Loan

* No --> No Loan

* > 5 --> Loan

* > 70K

* Criminal record?

* No --> Loan

* Yes --> No Loan

Exercises
(19) Implement functions to compute entropy of (a) a list of prob-

abilities (b) a list of frequencies and (c) a 2-D array of values
representing a data set, where each row is an observation and

72 Patrick White Draft: v 0.81

6.5. Coding Project: Play Tennis?

the final column contains the classification.
(20) Manually calculate the best feature for the PlayTennis data

set. You may want to use the entropy functions in the previous
exercise.

(21) The choice of data structures to represent a data set and a de-
cision tree will have a impact on the complexity of your code.
Brainstorm at least 5 data structures for a data set and 3 for
the decision tree. Compare the complexity of the necessary
functions on each. (Time complexity is important here, but
focus first on programming complexity. Slow and right is bet-
ter than fast and wrong.) Consider lists, arrays, nested lists,
tuples, dictionaries, sets, hashes and custom data structures
that combine all of the above.

6.5 Coding Project: Play Tennis?
You will implement the algorithms presented in this section and
build a decision tree to correctly classify the observations in the
PlayTennis dataset.

TheProblem
Play-Tennis is a well-known beginning data set in machine learning
literature. It first appeared in (Quinlan 89?). The fourteen observa-
tions consist of 4 categorical features and one binary classification.
While there are many decision trees that correctly classify all the ob-
servations, there is only one tree that uses entropy-loss at each step
to determine the best feature for splitting the dataset.

Design specifications
You will implement the algorithms described above and any helper
functions needed to produce a data structure representing the de-
cision tree learned by Decision-Tree-Learn. You should read file

Draft: v 0.81 Patrick White 73

Chapter 6. Decision Tree Learning

play-tennis.csv, parse it into an appropriate representation, learn the
decision tree, print the decision tree in outline form, and finally test
the decision tree to verify all 14 observations are correctly classified.

You should also write functions that can produce the following
statistics about your tree: total number of nodes (including leaves),
number of leaves, number of non-leaves, average path length (for
each leaf, count the number of nodes from the root to the leaf, in-
clusive, and average these counts). Print this data along with the tree
outline.

Your tree outline should be formatted like the sample above.
You should additionally include with each node, the entropy of the
dataset associated with that node. For example, the root node would
display the entropy of the entire dataset while leaf nodes would have
an entropy of 0.

Implementation Notes
As discussed in the exercises, finding the right data structures will
be crucial for this problem. For the data set you should be able to
easily refine the dataset, extract the values in any feature, and extract
a subset of rows. The original .csv file does not include ID numbers
on the data, but youmay find it very helpful to add unique IDs so you
can represent observations with just an index instead of the entire
row. Beware of nested-list type structures in Python, especially if
you try copying. Remember if you’re dealing with an object or a
pointer to an object. If at all possible, avoid copying entirely. It is
not necessary in this code, creates time and space overhead, and can
lead to subtle errors.

The tree itself can be modeled after any standard tree or graph
data structure. As suggested in the pseudo-code, you will need to
make sure you can label nodes and edges and distinguish leaf nodes
from internal nodes. The list of children of a node can be easily
handled as a list of tuples or a dictionary of (edge-label: node-label)
pairs.

74 Patrick White Draft: v 0.81

6.6. Performance Metrics

Listing 2 Using PyGraphViz
import pygraphviz as pgv

G = pgv.AGraph(directed=True)

G.add_node(1, label="Age?")

G.add_node(2, label="Accept")

G.add_node(3, label="Reject")

G.add_edge(1,2, label = ">25")

G.add_edge(1,3, label="<= 25")

G.layout(prog="dot")

G.draw("minimal-tree.png")

Extensions
GraphViz³ is open-source graph visualization software. It consists
of a language for specifying graphs and routines that can draw these
graphs as graphics files. Python has an interface to GraphViz called
pygraphviz that makes it easy to specify graphs in pure python and
generate graphs from them.

For this extension, learn how to build and draw graphs in Python
using pygraphviz and add the ability to your code to draw a decision
tree’s graph. You will need to label the nodes and edges and may,
therefore, need to specify a way to abbreviate labels. Otherwise the
tree may become unwieldy.

A sample of a tree produced by pygraphviz (based on data in the
next programming project) is shown in Figure 6.3

To help you get started, see Listing 2 for sample code to produce
a minimal example of a decision tree using pygraphviz.

6.6 PerformanceMetrics
It is always possible to build a decision tree with a 0% error rate
on a consistent data set. (Consistent means that if x1 = x2 then
³http://graphviz.org

Draft: v 0.81 Patrick White 75

Chapter 6. Decision Tree Learning

Figure 6.3: A Decision Tree drawn by GraphViz

76 Patrick White Draft: v 0.81

6.6. Performance Metrics

0 2 4 6 8 10

2

4

6

8

10

0 2 4 6 8 10

2

4

6

8

10

Figure 6.4: High and low degree polynomial models

f(x1) = f(x2).) But this tree could be very complicated and may
not capture an underlying structure that generalizes well. To tell the
applicability of a learning model beyond the data set it was trained
on, we will use a second data set – the test set to validate the accuracy
of the model. If the mdoel has truly caputred an underlying concept
(it closely models the unknown f), then it should have a low error
rate on the test set as well.

A similar phenomenon occurs with polynomial regression. A
set of n points in the plane can always be perfectly interpolated with
a degree n − 1 polynomial. It is very unlikely, though, that this
polynomial will have any applicability beyond the n original points.
A low-degree polynomial model is almost certainly a better choice.
(See Figure 6.4.)

When a learning model matches the training data too closely
that it performs poorly on the test data, we say that model has overfit
the data. In decision tree learning, a helpful technique is to analyze
the test set error rate of the tree learned as a function of the training
set size. Typically the error rate will decrease until a certain point
and start increasing again. This optimum point of no return is a good
indicator of the onset of overfitting. Such a graph is called a learning
curve (see Figure 6.5)

When analyzing data in this way it is critical to keep the training
set and test set separate and never unduly allow the test set to change
your choice of model. The test set can be used as a benchmark of
accuracy but should never be used to help train the tree. Otherwise

Draft: v 0.81 Patrick White 77

Chapter 6. Decision Tree Learning

Figure 6.5: A Learning Curve (placeholder)

it loses it purity as an unseen test set. Given an initial dataset it is
customary to partition it so that 50-90% of the data is used for the
training and the remainder is used for the test set. If the learning
algorithm is run multiple times in succession, a new training/test
set partition should be randomly chosen so the results will not be
conditioned on the model’s performance against one fixed test set.

6.7 Additional Considerations
Inconsistent data sets
So far we have assumed consistency of the training set. Otherwise
it will be impossible to achieve a 0% error rate on the training set.
Worse than that, the algorithm given above will fail if a set of iden-
tical observations are found with a non-zero entropy.

One simple fix is to modify the algorithm so that if the current
dataset cannot be split, because all features have the same values for
all items in the set, but the classifications are not all identical, then

78 Patrick White Draft: v 0.81

6.7. Additional Considerations

return a leaf node with a label equal to the majority classification in
the dataset.

Missing Values
Real-world data sets rarely contain entirely usable data. A frequent
issue is that some observations may have missing values for one or
more features. You may be tempted to just throw these observations
out, but they often still contain useful information, and more often
than not you won’t have enough rows to learn a meaningful hypoth-
esis from if you demand each observation be fully populated.

Missing values can affect the training set and the test set. Dif-
ferent techniques can handle each case. With missing training data,
you can preprocess the data set and fill in the missing values with
reasonable guesses. Assume that observation n is missing the value
of feature f . One way you can fill in the value is to replace it with
the majority value of feature f across the entire dataset (i.e. the most
common value). If the feature is continuous valued then instead of
the majority you can replace it with the average or median value of
the feature. An alternative method to each of these is to compute
the majority (or mean or median) relative to only the subset of the
dataset that has the same classification as row n.

Missing data in the test set can be handled while the resulting
tree is being traversed. For one, it may be possible to classify the
unseen observation without referring to the missing feature – the
tree may classify it using only the other rows. In the case where the
missing feature appears while traversing the tree, the algorithm can
take all paths out of the node corresponding to the unknown feature
and tabulate the majority classification. Give an example

Continuous Valued Features
The datasets in this unit only contain categorical features. But real-
world datasets often contain quantitative values. For example a pa-
tient’s medical records will contain temperature, blood pressure and

Draft: v 0.81 Patrick White 79

Chapter 6. Decision Tree Learning

pulse rate data, along with a diagnosis. In order for a decision tree to
deal with temperature, it will be necessary to find a split-point to con-
vert the continuous data into categorical. For example temp > 101
would be a binary feature resulting from the original temperature
data.

Though in some cases the split point can be determined before
hand (for example it may make sense to split age at 18, 21, or 25 in
some contexts), modern decision tree learning algorithms determine
the best split point dynamically as the tree is being built. A simplis-
tic way to do this is to consider every possible split point and choose
the one with the most information content. The requires doing an
entropy computation for each value in the feature – not every obser-
vation in the dataset. A medical record database of 10,000 patients
will probably contain at most 70 different temperatures (98.0-105.0
in increments of 0.1). Even so, there are better approaches than this
brute-force technique.

Pruning
As we have seen, large decision trees are prone to overfitting. Trees
typically grow in size as the size of the training set increases, yet
limiting ourselves to a small training set runs the risk of choosing
an unrepresentative sample. Pruning is a technique that allows us
to process a large training set but avoid overgrowth of the tree by
adding nodes only when they are statistically relevant. Is it possible
to prune while the tree is being built, or after.

To prune the tree during the learning phase you need a procedure
to determine if the current node should be split or if it should become
a leaf. For example if 50 observations are classified “Play Tennis” and
3 observations are classified “Do Not Play Tennis”, it might not be
worth splitting the dataset to deal with just 3 examples. They may be
spurious or just arise from random noise in the dataset and not part
of a true underlying concept based on these features (for example,
maybe one beautiful cool day you didn’t play tennis because you had
the flu, and another day you didn’t play because your car had a flat

80 Patrick White Draft: v 0.81

6.8. Programming Project: Party Affiliation

tire.) An easy heuristic way to determine whether to split is to set a
minimum entropy slightly above 0 as the test for creating a leaf and
then to label that leaf with the majority classification.

Another more justifiable technique, called Chi-Squared Pruning
uses statistical testing to determine if the current feature is likely
to provide additional information or not, based on the frequency
distribution of classifications in the current dataset and its parent
dataset. If the feature is unlikely to be informative, the split will not
occur and a majority-labeled leaf is created.

Pruning after-the fact can be done by successively removing sub-
trees from the original tree and comparing the test error rate. If
a subtree can be removed and the test accuracy is not significantly
harmed, then that subtree can probably be safely pruned from the
tree.

6.8 Programming Project: Party Affiliation
You will build a decision tree from a dataset of congressional voting
record. It contains about 500 rows and 16 features. Based on voting
records you will be able to predict party affiliation of the congress
members

TheProblem
This publicly available dataset (downloaded from here) contains vot-
ing records for 16 different congressional bills and the party affilia-
tion (democrat or reupblican) as the classification. The data is dirty
because some of the votes are missing. Features are binary variables
(y or n) and each row is labeled with a unique ID.

In the first part of this project you will simply build a tree using
your existing Decision-Tree-Learn algorithm, essentially ignoring
missing data. You will produce some graphs analyzing the error rate
of your algorithm on the training and test sets as a function of the
training set size. Then you will enhance your algorithm by dealing

Draft: v 0.81 Patrick White 81

Chapter 6. Decision Tree Learning

with missing data in different ways.
Finally you will investigate some techniques for pruning the tree

you learned and make some decisions about the best tree for the con-
cept.

Specification
Implementation Notes
Extensions

82 Patrick White Draft: v 0.81

