Teaching Calendar

o 8/22/2024. Introduction to class. See more details

o 8/26/2024. Didn’t It Rain? Exploring data Also here’s a fix for WSL and
Python

o 8/28/2024. Present findings from weather data. Class Notes. Discuss
Bayes’ Theorem.

— HW: Finish Bayes’ Theorem notebook. (html version). Please read
this intro to jupyter and python lists if you need some pointers.

e 9/3/2024 (Tuesday) Turn in Bayes homework. Quick library orientation.
New notes on Linear Regression — new notes provided.

— HW: Complete the linear regression notebook, (html version) for
classwork/homework. As an application, do a linear regression on the
London weather dataset (this part is not HW yet but will be). For
next class: pick some new ideas from your Money List to discuss.

e 9/5/2024 (Thursday) Turn in Linear Regression homework. Go over
Bayes and Regression notebooks in class. Discuss goodness of fit measures
for categorical and quantitative data. Notes on Pearson’s Correlation
Coefficient.

— Classwork: perform a linear regression on the London weather dataset.

— Then find your own dataset somewhere and perform a linear regression
on it. In both cases use the LR algorithm you coded already; do not
use built-in linear regression tools, please. Make your data analysis
into a nice, brief write-up (emphasis on brief) and turn it in before
class ends (as a jupyter notebook).

— Classwork: Discuss some recent money list ideas

— HW: Finish classwork, any other old notebooks that aren’t done yet

Homework 01

Goals for the day

e Set up python dev environment on school or personal laptop
o Raspberry Pi Project
e Money List

Set up dev environment

You need a decent amount of software to do real machine learning and your life
will be much easier if we all have the same dev environment, to a certain degree.
Here are steps we can take to try to get on the same page (these instructions
are not perfect and if you get stuck, try to figure it out or we’ll fix it in class)

1. Install a real text editor (VSCode, Atom, Sublime, vim, emacs, ...). If
you don’t know or care, do VSCode.

lessons/hw01.md
lessons/hw02.md
lessons/wsl.md
lessons/wsl.md
lessons/cw03.md
lessons/Bayes_Theorem_Student.ipynb
./lessons/Bayes_Theorem_Student.html
lessons/jupyter-python-intro.md
./lessons/least-squares-01.ipynb
./lessons/least-squares-01.html
./data/london_weather.csv
https://code.visualstudio.com/download

2. On a Windows machine, install WSL (Windows Subsystem for Linux) fol-
lowing these instructions. Be sure to select Ubuntu 22 for your distribution
(unless you are sure you will never need to ask me for help).

3. Inside linux (WSL or Mac/Linux bash shell), install asdf (a version
manager for executables) according to these instructions.

4. Set up python

1. Restart your shell (in WSL or Mac/Linux bash shell)

asdf plugin add python

asdf install python 3.11.9

asdf global python 3.11.9 or asdf local python 3.11.9

Make a directory for your ML projects mkdir ~/ml then open the

directory cd ~/ml and set up a virtual environment (next)

5. Set up a virtual environment (a directory with specific version of python
and libraries to use in your projects.)

1. In your ml directory (cd ~/ml)
2. Ensure you're running python 3.11.9: python --version (if not redo
step 4.4 above)
3. Create a virtual environment python -m venv env (This creates a
directory named env with a local install of python)

Activate the environment source env/bin/activate

Copy this file to your folder ~/ml as requirements.txt.

Install the libraries pip install -r requirements.txt

Everything should install with no errors (warnings are OK.)

8. See if jupyter is working: jupyter-1lab (should open a browser)

CU @

N ot

Action Item: (As much as possible...) Set up a functioning python 3.11.9 dev
environment with Jupyter and a text editor. Use the provided requirements.txt
file to create a virtual environment with the packages needed for class.

Optional (last resort)

If the WSL route is too complicated for now or just not working, Anaconda will
get you up and running. The reason this is not recommended is that Anaconda
installs a LOT of software and does a LOT of setup behind the scenes. And
when you want to change something, or bypass Anaconda for a reason, it can be
tricky to disable it. That said, it is very popular and good at what it does.

Install Anaconda for Windows

Raspberry Pi Project

I have about 25 Raspberry Pi 3s and would like you to do something with one.
Go home, read about them, find a fun project or something to install or make
and come tell me what it is. If I approve, then I’ll give you a pi for a few days to
make it work. In addition to the Pi we have sensors and peripherals and things
so if you want to do something fancy we might be able to find the stuff for it.
Just note: this is not a big project. Just a quick thing to get something up and

https://learn.microsoft.com/en-us/windows/wsl/install
https://asdf-vm.com/guide/getting-started.html
../requirements.txt
https://anaconda.cloud/api/iam/email/verified/1a8a9aa0-e28f-4ceb-9ca4-b29dde699d5c

running.

You will need a monitor, HDMI cable, keyboard and wired mouse to complete
the initial Pi setup. After that it can run “headless” on your home network. If
you don’t have these things at home, we can probably get you to do the initial
setup here at school.

Action Item: come to class with some ideas for projects. Be ready to discuss
with friends and/or the teacher.

The Money List

Your money list is a list of ideas that will make you money! You’ll add to it all
year. It starts off simple: write down things that annoy you and think of ways
to fix them. The annoying things can be literally anything (that’s the point of
brainstorming) and the “ways to fix them” can be outlandish. But, the goal is
to occasionally stumble on an idea that is generally useful to lots of people and
whose solution is something you can work on. If your idea is good enough and
your solution works, then sell it. Make money!

Action Item: Start the list somewhere semi-permanent. In a notebook, on your
computer, Google Drive, or your phone. (the best might be a cloud file shared
to multiple devices). Try to find 3 ideas by next class. Don’t be too picky

Exploring data

The file weather-daylight.csv contains observational weather data for Leesburg,
VA. We want to analyze the hypothesis “the fall of 2023 had more cloudy and
rainy weekends than normal.” As a class, let’s look at the data and talk about
our ideas for processing it. Open this file in Microsoft Excel, or something like
it.

What questions do you have? What pre-processing is relevant? What types of
calculations would support or refute the claim? Do you know how to make those
calculations in Python or another language or tool?

Look at It! LOOK at IT!

(Bonus points if you know the Seinfeld reference). The first thing to do is just
look at the data set. What do you see? Here are some questions you should
ask? - How many rows, how many columns? - Is the data rectangular (are all
rows the same length?) - What types of data? (Numerical, categorical?) - What
domain of data (numerical: min and max, precision, mean, variance; categorical:
number of categories) - Any missing data? - Is the file clean (read/write errors?
paragraphs of text before or after? anything else weird?) - Find meaning: What
do the columns are rows mean? Are there headers? Are they defined? - What is
the source? Is this data reliable? - Weather columns

../data/weather-daylight.csv
../data/weather-columns.md

Analyse it

What question are you asking?
What does the data say about the question?
Repeat the last 2 steps as needed!

Jupyter Notebook

Follow this link to a jupyter notebook

I believe you can save and open notebooks from this interface, as long as
you are using the same Chrome profile and history (it uses local storage to
save state).

Homework

Open the jupyter notebook above from class on mybinder.org (or you can
run it locally as jupyter-lab in your ml folder on WSL. Make sure to
copy the notebook to your ml folder first — download it).

Devise a different way to analyse the question about the weather in Leesburg
and try to analyse it using pandas. What conclusion can you draw?
Make some interesting plots from this dataset. You will need to read up
on plotting in dataframes using pandas and possibly some things about
pyplot.

Consider the London Weather dataset. Investigate the question “Has
the weather in London gotten worse in the last 50 years?” Analyse the
data and make a claim that you can support. Source for dataset: https:
/ /www.kaggle.com/datasets/emmanuelfwerr /london-weather-data, which
retrieved the data from https://www.ecad.eu/dailydata/index.php.

Be prepared to discuss your findings and present to the class if asked to!
(Your research doesn’t need to be profound but I do need to see you're
learning how to use pandas).

To be safe, you should download any notebooks you create on
mybinder.org because I don’t know how reliable its storage system is.
WSL Problems: Fix posted!

In general I'm always happy to answer homework questions. Remind is
the best way to reach me in the evening so don’t shy away from asking. If
I can’t help, I'll say so. Otherwise I'll try my best!

Fixing WSL

If you tried my first instructions and ran into some kind of python packaging
error (looks like mysql is a culprit), here’s a patch

First, you should switch to your m1 folder in WSL and delete the old environment.

$ cd ml # or whatever
$ deactivate # may not do anything if you didn't activate the env

https://mybinder.org/v2/gh/AET-CS/ML-binder/HEAD?labpath=weather.ipynb
../lessons/weather.ipynb
../data/london_weather.csv
https://www.kaggle.com/datasets/emmanuelfwerr/london-weather-data
https://www.kaggle.com/datasets/emmanuelfwerr/london-weather-data
https://www.ecad.eu/dailydata/index.php
../lessons/wsl.md

rm -rf env # this deletes the old environment

asdf local python 3.11.9 # make sure you're on the right python
python -m venv env # make the virtual environment

source env/bin/activate # enable the new environment

pip install jupyterlab numpy scikit-learn matplotlib pandas
jupyter-lab # make sure it works

B H P P H PH

When I tried this on one student machine it worked. Jupyterlab runs in a browser
and you may have to click on a link that appears in your console to get it to
run. (the link will contain localhost or 127.0.0.1)

The problem seems to be an incompatibility with the packages I defined in
requirements.txt. The Python Package Manager (pip) tries to resolve depen-
dencies in a consistent manner but does not always succed (i.e. it usually fails
on big projects.) I was hopeful the environment I carefully curated would work
on windows AET machines but it doesn’t. This short pip install command
installs what we need right now and will be fine until I can properly debug with
my own machine.

August 28

Today in class - 5 minutes for computer bugfixing - Present findings for weather
data - Upload HW to server - wsl: cd into the ml directory where your jupyter
notebook is located (download it if it’s online) - wifi: AET-3142 - use wsl ftp
and ftp username@ubuntu - your username is 1111111f, (first 7 letters of last
name, then first initial, according to phoenix) - passwd is your student ID - to
save the file: put filename (tab completion should probably work here) - to
check it’s there: 1s - to disconnect ctrl-D or (I think) exit - Discuss Bayes’
Theorem, including Jupyter notebook and python concepts * lists, arrays and
comprehensions in python * for loops in python * add, delete cells in Jupyter *
Markdown cells and syntax

Homework is complete the Bayes’ Theorem Jupyter notebook.

Bayes’ Theorem

Bayes’ Theorem gives us a way to invert conditional probabilities. The formula
comes from the definition of conditional probability

P(A|B) = P(QE)B)

this implies the following

P(AN B) = P(A|B)P(B) = P(B|A)P(A)

Solving for P(A|B) we get

P(B|A)P(A)

PAIB) = =5

Though this is the final form, in practice you will need to compute P(B) using
the following

P(B) = P(B|A)P(A) + P(B|A)P(A)

which says the probability of B is the sum of the probability of B given A and
B given not A. (A is either true or false so these are the only two options)

Exercise 1: Plot a Venn Diagram

Using matplotlib, draw a simple Venn diagram representing two sets A, B with
a non-null intersection.

Code here. Add cells as needed

Exercise 2: Compute Bayes’ Probabilities

We want to replicate the computation carried out in class. If a doctor performs a
test that has a given accuracy, for a disease with a given incidence rate, determine
the probability that a randomly selected person with a positive test result has
the disease. You are given accuracy and incidence as input, both in the range
(0,1]

def get_bayes_probability(acc, inc):
code here
return bayes

Check some results below. The first one comes from class
get_bayes_probability(0.97,0.001)
get_bayes_probability(0.97,0.01)
get_bayes_probability(0.97,0.1)
get_bayes_probability(0.99,0.001)
get_bayes_probability(0.50,0.001)

Exercise 3: Plot

You will create two plots in the section. For a fixed incidence rate, plot the bayes
probability as the accuracy of the test ranges from 0 to 100%.

Then, for a fixed accuracy, plot the bayes probability as the incidence rate
increases.

Note, to avoid 1/0 errors you’ll probably want to not go all the way to 0 or 1.

State a conclusion about the results. What’s the correlation? What do you
observe? What do you think about accuracy measures for tests now?

Hint: create two arrays X,Y (python lists) of the same length containing the
X values in one array and the Y values in another. List comprehensions are
the best way to do this in python, though a for loop is fine too (append to an
initially empty list)

then use plt.plot(X,Y)
from matplotlib import pyplot as plt

code here. add as needed

Exercise 4: Beautify plots

Now go back and beautify your plots. Add a title and a legend. Some axis labels.
Maybe read about matplotlib styles and change up the colors. Try a different
type of plot. Just experiment some. Results below.

Quick Jupyter Intro and Python Loops

Jupyter notebook is arranged into cells. Cells can contain Input (computa-
tions/code), Output and Markdown (text). A cell can be selected or active. To
select a cell, click to the left of it and it should highlight with a colored border.
To activate a cell, click inside of it so the cursor is visible. To run a code cell, or
render a text cell, type shift-return.

When a cell is selected you can do cell operations by typing single letters such as

e A add a cell above this one

e B add a cell below this one

e X cut the cell to the clipboard

e C copy the cell to the clipboard

o V paste the cell on the clipboard

e D delete the cell

e M convert a cell to markdown style

e Y convert a markdown cell back to Input style

You can also drag a selected cell around the notebook with the mouse. You
should also get familiar with the menu bar and toolbars. There are several
useful operations hidden there. For example, rerun all cells is handy as is Clear
Outputs of all cells

Python Loops

T’ll show some basic examples of how to do things in python. You may want to
run these in Jupyter to verify.

e Print the numbers 0-99 on separate lines python for i in
range (100) : print (i)

e Print the numbers 10-99 on separate lines python for i in
range(10,100) : print (i)

e Print the even numbers 10-19 on separate lines python for i in
range(10,20,2) : print (i)

e Print all characters in “hello computer”, all on one line python for
¢ in "the word": print(c, end="")

e Compute the largest Fibonacci number less than 1000 (note the use
of parallel assignment) python a,b=1,0 while a<1000:
a,b = atb,a

Python Lists

Python’s regular list data type is not a true array, such as you would find in C
or Java. An array is, properly, fixed length and single type. Python uses lists
which are dynamic (auto-resizing) and can contain any type. For example

11

[1,2,3]

12 = ["bird",2,-10.3,"cow"]
13 = [11,12,3]

print(11)

print (12[2])

print(13[1] [11)

(1, 2, 3]
-10.3
2

You see lists can even contain lists. Here are some familiar tropes in Python

1 = [0]*10 # a list of 10 zeros
for i in range(len(l)):
1[i] = i # replace the zeros with the index
for i in range(10,20):
l.append(i) # add more elements to 1
for i in range(20,30):
1 =1+ [i] # another way to add
print (1)

This prints the integers from 0 to 29 inclusive.

Lists are very flexible and there are many operations that are easy to do such as
sort, find, replace, merge, delete. If you want to perform a list operation, look it
up in online and see if it is already a built-in operation

Comprehensions

Comprehensions are beautiful and lovely ways to build lists quickly. I'll just give
a couple examples here

This code
1=1]

for i in range(10):
1.append (i**2)

can be replaced with this comprehension
1 = [i**2 for i in range(10)]

It is quite lovely, isn’t it. It reads like a math set definition

L={i*|0<i<10}

And make great tools for plotting, say

from math import sin

from matplotlib import pyplot as plt
X = [i/100 for i in range(628)]

Y = [sin(i/100) for i in range(628)]
plt.plot(X,Y);

will plot one period of a sine curve.

In practice, numerical algorithms will use numpy arrays instead of python lists
because they are much much faster and work like traditional C arrays. But lists
still come in extremely handy when you need to collect data and speed is not a
priority.

Linear Regression
Given n points (x1,41) ... (Zn,yn) and an assumed relation y = f(x) + €, € ~

N(p,0) we want to find a model g; = ax; + b such that the residual squared
error

is minimized.

RSS is a function of the line parameters a and b. To minimize it we set both
partial derivatives to zero. (This could technically find a maximum — but it’s
reasonably clear this function has no maximum value because the error can
always be increased.)

Take partial derivatives

JRSS . 0
=2Z(yc—yi)%(yi)

da
= QZ (i — vi) (20)
% :QZ(Qi—yi)%(ﬂi —¥i)

= QZ(Z% —vi) (1)

Since
0 0
327 = 34 (ax; +b) = x;
o_ 0 B
%yc— %(axc—l—b) =1
And solve
ORSS 0
da (Ui —yi)xi =0
=
ORSS > (Gi—yi)=0
ab

Since §; = ax; + b

Z(ami—l—b—yi)xi:0:>a2xf+b2xi:z:yixj
Z(ami—&-b—yi):0:>ain+b21:Zyi

by Cramer’s rule

and

o = ' DTy Y
Zyi n
2T DY

I
(B

10

since Y . 1=mn
Taking determinants,

_ny iy — (o x) Qo vi)
nYa?— (Y x)?

b— Zyzszf — DTy XY
ny a? — (Y)

Interpretation as a ratio of variances
Students of statistics may appreciate the following manipulations

Definition of covariance

E(ry) — E(z)E(y) = Cov(z,y)
Definition of variance

Var(z) = E [(z — p)?]

Lemma

Manipulating the denominator of the equation for a on the previous page,

et () = (A5 (22))
=n’(E [2*] — E[z]*)
n? Var(z)

And the numerator

=n? (ileyl_ileizyl>

2 (B 2] — Bl Bly)
=n® (Elzy] — pypy)
= n? Cov(z,y)

11

SO

o = Eleyl = papy _ Cov(z,y)
Ela] — 3 Vav(z)

Linear Least Squares

In class we derived the formula for linear least squares of one variable. In this
notebook you will learn a bit of the numerical library numpy, use numpy to
compute linear regression, and then compute it yourself using formulas from
class

Begin by running the cell below. Then go back and carefully read through all the
code. There is a lot of new stuff here. Note how to create numpy arrays/matrices
and how to compute a linear least squares regression.

import numpy as np
import matplotlib.pyplot as plt

Step 1: Prepare your data

z: Independent variable (input)
y: Dependent wvariable (output)
np.array([l, 2, 3, 4, 5])
np.array([2, 4, 5, 4, 5])

<MW oE R R

Step 2: Perform linear regression using the least squares method

Add a column of ones to the input data for the intercept (bias term)
X = np.vstack([x, np.ones(len(x))]).T

Calculate the slope (m) and intercept (b)
a, b = np.linalg.lstsq(X, y, rcond=None) [0]

print(f"Slope (a): {a:.4f}")
print (f"Intercept (b): {b:.4f}")

Step 3: Predict y wvalues using the regression line
y_pred = a * x + b

Optional: Plot the data and the regresstion line
plt.scatter(x, y, color='blue', label='Data points')
plt.plot(x, y_pred, color='red', label='Regression line')
plt.xlabel('x")

plt.ylabel('y')

plt.legend ()

plt.show()

12

An aside about numpy matrices

What happened to x7? Here’s the original x, which is an array

X

We add a row of 1s after it and take the transpose to get the input matrix X
X

Breaking this down into pieces, first let’s make a python list that contains x and
an array of ones

[x,np.ones(len(x))]

Now let’s use numpy to make a vertical stack. The first element in the list
becomes the first row

np.vstack([x, np.ones(len(x))])
And now take the transpose

np.vstack([x, np.ones(len(x))]).T

Practice with matrices

Make a numpy matrix that is a row of 5 zeros followed by a row of 5 ones, then
5 zeros, then 5 ones again. Use built in functions and vstack (don’t just type a
bunch of 0 and 1 — can you guess the name of a function that makes an array of
zeros?)

Now make a similar matrix that is a row of all 1s followed by all 2s in the second
row, then 3s then 4s. Again use built in function np.ones. Name this matrix M.
Hint: [2,2,2,2,2] =2-[1,1,1,1,1]

compute M times M transpose and M transpose times M (M M7 and M7T M).
In numpy AB can be computed with A @ B for matrices A and B

A matrix M is symmetric if M = M. This also implies M;; = Mj; for all
indices (7, 7). Write a python function is_symmetric(M) which returns true if
and only if M is symmetric

Test your function. Make a 5 by 5 random integer matrix (see np.random.randint)
called M. It is a fact that M M7 is always symmetric. Check that your function
return true for M M7 and false for M. Repeat this trial 100 times and verify
all 100 are correct.

13

Linear Least Squares Regression

You can create a vector of normally distributed samples with mean g and standard
deviation ¢ by using the numpy function np.random.normal (mu, sigma, n).
Try creating a vector with 10 random samples, with a mean of 100 and a standard
deviation of 5.

Now create some data for linear regression. Make a vector x of ints over the
range [0,9] and let y be a linear function of x, y = 3z + 2 + ¢(x) where ¢(z) is a
random Gaussian noise function e(z) ~ N(0,1). Make a scatter plot of y vs.
and label it

Compute the correct linear regression coeflicients using numpy as above. Check
they are resonable.

Now compute the regression coefficients using the formulas from class. Begin by
defining some very helpful variables: Sx, Sy will be >, ; and >, y; respectively.
Next Sxx and Syy are the sum of squares: ., z;% and) ,y;?. Finally the
inner product Sxy =) . x;y;. The quickest way to do this involves using
comprehensions and the sum function, but you can use loops for now if you need
to.

Print your results
Sx, Sy, Sxx, Syy, Sxy

Finally determine a,b as in class. Display the absolute errors between your
calculations and the ones numpy returned. (They should be close to machine
precision, which is 10715 give or take.

Least squares function
Did you know python can return two values? Here’s an example.

def two_numbers():
a =1
b = 10
return a,b

A, B = two_numbers()
print(A,B)

14

Write a function linear_least_squares(x,y) which takes input vectors x,y
and returns a,b as above. (

def linear_least_squares(x,y):

Application

Now, using a = 5,b = —15, run linear least squares 100 times on 100 vector pairs
(z,y), where each of the 100 = are the same but the y = ax 4+ b + ¢ each have
different amounts of Gaussian noise. Plot the resulting best fit lines all on the
same graph. - Use np.arange to make your input vector x cover the domain
[—5, 5] with a step-size of 0.01 - Create arrays to store all the computed a and
b values (you’ll use this later) - If you call plt.plot() in a loop, it will keep
adding to the same plot - Give your plot a title!

Determine the average of the as and bs returned above. Compare these to the
true a,b. Explain your result.(There is an np.mean function)

Make two histogram plots of the calculated a and b values plt.hist works nicely
and adding a semicolon suppressed the nasty text output (you’'ll see)

Correlation Coefficient

We assume, as usual, a ground truth model y = f(x) + € where f is usually
unknown, a (possibly random) sample of points (z1,y1), - , (€n,yr) and a linear
model § = ax + b. In this setting we usually need to know how good the linear
model is — how well does if capture the ground truth f(z)?

One obvious measure is the sum of squared errors, which we minimized last class
to derive the linear regression equations.

SSE = (i — i)
i—1

While this literally captures the error in the model on each point, it is hard to
interpret, it scales with the number of points, and is in different units from the
given data. We can normalize it to the mean sum of squared errors:

n

1
MSE = — Ui — yi)>
S nE(yz Yi)

i=1

15

which at least doesn’t scale with the number of points but is in different units.
Thus by taking a radical

n

% Z(ﬂi —yi)?

i=1

RMSE =

we get the root mean sum of squared errors. This at least scales with the
magnitude of the y values, so you can interpret it somewhat. It is also similar to
a standard deviation, which is familiar to many people. (Note some texts would
divide by n — 2 instead of n to create a truly unbiased estimator for the standard
deviation, but this simpler version aggrees with other data science presentations,
including kaggle.)

Pearson’s Correlation Coefficient

While variants of SSE have their place, one cannot escape the use of r, the
Pearson’s correlation coefficient. Students learn in algebra classes that a linear
regression coeflicient » = 1 is a perfect positive correlation and r = —1 is a
perfect negative correlation and r = 0.5 is a weak correlation, for example. We
will take a more precise approach.

One formular for r is

o SSreg DG — 7)?

- SStot Zz(yz - ?)2

Let’s unpack this. SS;.cq is the sum of squared-error due to regression and 5S¢
is the sum of squared-error total (due to the original data). Here § = % > Yids
the mean of the observed y; values. SSi.:, then, is the variance of the observed
y; values — it is the sum of the squared deviations of the observations from their
mean.

r

SSreq, on the other hand, is the variance of the predicted g; values, relative to
the same observed mean.

The ratio of the two is the ratio of the “explained variance” to the “total variance.”
There is always variance in the original dataset. If our linear model very closely
fits the data, then it will explain most of that original variance. That would
correspond to a high r? value. On the other hand a low 2 indicates that there
is variance in the data that is not capture by the linear model. Something else
is happening to create this data shape.

It can be helpful to think of 72 as the percent of “explained variance”. You’'ll
notice this formula is for 2, not r. Obviously both are < 1 but they are not
identical. We may see more details of the various ways to interpret r vs r2 but
honestly for most cases this explanation is quite good enough and better than
what most people understand!

16

Examples of correlation

Figure 1: Examples of correlation

r=0

You may have been taught that r = 0 implies no correlation between and y
pairs. This is often indicated in math books with an amorphous cloud of points,
wandering lonely across the page, enigmatic and unknowable. Actually a number
of highly correlated datasets can claim to possess r = 0 values as this helpful
chart shows!

To be correct, » = 0 implies no linear correlation between = and y. If it so
happens that every predicted §; value is identical to the mean 7, then r? = 0.
Datasets with perfect vertical symmetry can have this property.

1By DenisBoigelot, original uploader was Imagecreator - Own work, original uploader was
Imagecreator, CCO, https://commons.wikimedia.org/w/index.php?curid=15165296

17

	Teaching Calendar
	Homework 01
	Set up dev environment
	Optional (last resort)

	Raspberry Pi Project
	The Money List

	Exploring data
	Look at It! LOOK at IT!
	Analyse it
	Jupyter Notebook
	Homework

	Fixing WSL
	August 28

	Bayes’ Theorem
	Exercise 1: Plot a Venn Diagram
	Exercise 2: Compute Bayes’ Probabilities
	Exercise 3: Plot
	Exercise 4: Beautify plots

	Quick Jupyter Intro and Python Loops
	Python Loops
	Python Lists
	Comprehensions

	Linear Regression
	Interpretation as a ratio of variances

	Linear Least Squares
	An aside about numpy matrices
	Practice with matrices

	Linear Least Squares Regression
	Least squares function
	Application

	Correlation Coefficient
	Pearson’s Correlation Coefficient
	r=0

