Truth Tables

Your ultimate goal is to reproduce the output of the website trutabgen.com.
The input to your program is a string representing a boolean expression and the
output is a full truth table.

Example

Input:

'A || !B & (C || D)
Output:

[T, T, T, T]1 F

T, T, T, F1 F

[T, T, F, T1 F

[T, T, F, F1 F

[T, F, T, TI T

[T, F, T, F1 T

[T, F, F, T1 T

[T, F, F, F1 F

[F, T, T, T1 T

[F, T, T, FI T

[F, T, F, T1 T

[F, T, F, F1 T

[F, F, T, T1 T

[F, F, T, FI T

[F, F, F, T1 T

[F, F, F, F1 T

The input will consist of the following: up to 5 variables from the set “A B
C D E”, negation “!”, and java symbols for and and or “||”, parenthesis and
whitespace.

The output will be a truth table with the appropriate number of rows and values
for the variables in alphabetical order. (You can assume that no variable are
missing, for example “A && D” is not valid input). The final column of the
output will be the truth value for the input expressions given the values found
in the row.

You will be given code that can evaluate expressions such as “true && !(false
|| true)”. You will provide the remainder of the code for the project, which is
divided into several parts.

Part 1 : Decimal to Binary

Write the function below

http://www.trutabgen.com

public static String dec2binString(int dec, int minLength) {
// return a string representation of the binary
// value of "dec". If the string length is less
// than minLength, padd with leading zeros
// Ezample input: 17, 7. output: 0010001

Part 2: Binary to Decimal

public static int bin2dec(String bin) {
// input s a binary string
// output is a base 10 integer
// example: input 0010001, output 17

Part 3: Testing

Test your code by selecting several strings of varying lengths and converting
them from binary to decimal and back.

Then convert several integers from decimal to binary and back.

In all cases, the inversion should produce the original input.

Part 4: Truth Table Input

Look at the truth tables generated by trutabgen.com. The rows are in a certain
logical order. You will write a function that produces the rows (the final column
will come later). Hint: Think about parts 1-2.

public static void truthTableRows(int numVars) {
// print the input rows of a truth table
// that uses numVars number of boolean variables

Part 5: Finishing the Project

This part is more open ended, but now you have all the pieces. Your goal is to
produce a function as described above. Take as input a boolean expression with
exactly four variables ABCD and produce a truth table output. You will need to

o generate the input rows in the appropriate order

o for each row,
— replace the variables with the string “true” or “false”
— evaluate the resulting expression using a provided function
— print the row to stdout

Test your code on the following expressions, and make up some of your own

http://www.trutabgen.com

- A & B & C && D
- A& (B Il 'C) IID
-D& (DIl CIIB) & A || C

Structuring hint it might be nice to have a method that takes input as the input
expression (string) and an integer, and output T or F depending on whether the
row corresponding to that integer is true or false.

Calling my code

Download and save my parser in the same folder as your code. You do not need
to edit my file. But in your java file you can say

boolean result = BooleanExpressionParser.parseBooleanExpression(expression) ;

to get the value of a string expression.

Java trick The ternary operator is very handy in this lab

int y = 10;
String x;

X = (y >0) ? "T" nE,
// © is T since 10 > 0

// thtis replaces the following code
if (y > 0) {

x = ”T”;
} else {

x = "F";

}

Test Cases

- 1(A & B) || (A & !'B) || (C && 'D && 'A)
- FFFFTTTTTTTTTTTT (from the top down)

-t Il 'BIIC Il (A& B) || (D && !'D && !'A)
- FFFFFFFFTTTTFFFF

- (A& B |l 'C) |l ('D)
- TTTTFTTTFTTTFTTT

Bonus Extension: 3-SAT
A 3-SAT boolean expression is an expression like

Iy Il 'z) & x| 'w il z) & Cy |l ta |l ¢

which is a series of size-3 disjunctions connected by boolean and. A disjunction
is a series of variables, possibly negated, connected by boolean or. The 3-SAT
problem asks whether it is possible to set each variable to either true or false
so that the entire expression evaluates to true. If such a setting exists, the
expression is said to be satisfiable.

The purpose of this bonus lab is to approximate the fraction of 3-SAT expressions,
of a given size, that are satisfiable. The input will be two parameters: the number
of variables and the number of disjunctions. You will generate some number
of expressions randomly and solve each one for satisfiability, if possible. Then
report the fraction of the test cases that were satisfiable.

Input: 2 integers, num_vars and num_disjunctions
3 <= num_vars <= 26
1 <= num_disjunctions <= 100

Output: A real number O<r<1.

	Truth Tables
	Example
	Part 1 : Decimal to Binary
	Part 2: Binary to Decimal
	Part 3: Testing
	Part 4: Truth Table Input
	Part 5: Finishing the Project
	Calling my code
	Java trick The ternary operator is very handy in this lab

	Test Cases
	Bonus Extension: 3-SAT

