
Calculator Project

Calculator Assignment Instructions
You are implementing a 4-function calculator. Think of a simple casio or basic calculator app. The display
shows the current number you are typing, or an intermediate calculation result. It does not display any
operands or other info, except the occasional “error” when appropriate. The skeleton of the program is
given to you; you will update the controller and model to add functionality. First you will implement simple
left-to-right evaluation using two stacks. Second you will implement operator precedence. Finally you will
add extensions of your choice.

Overview of Architecture
This calculator application follows the Model-View-Controller (MVC) design pattern:

1. Model (CalculatorModel.java): Manages the data and calculation logic, including operand and
operator stacks.

2. View (CalculatorUI.java): Handles the user interface elements including display and buttons.
3. Controller (CalculatorController.java): Processes user input and coordinates between the model

and view.
4. Main Application (Calculator.java): Entry point that initializes the MVC components.

Supporting classes include: - Operator.java: Constants for calculator operations - DebugStack.java:
Extended Stack implementation for debugging

Figure 1: Calculator Interface

Operand and Operator Stacks
The calculator uses two stacks to manage calculations: - Operand Stack: Stores numeric values (operands)
for calculations - Operator Stack: Stores operators (+, -, ×, ÷, etc.)

1

These stacks allow for sequential processing of operations. When operations are performed, values are popped
from the stacks, calculations are made, and results are pushed back.

Methods to Complete
In CalculatorController.java:

1. handleClear(): Reset the calculator state, clear display and stacks.
2. handleBackspace(): Remove the last character from the display.

In CalculatorModel.java:

1. appendDecimalPoint(): Add a decimal point to the current display value if not already present.
2. backspace(): Remove the last character from the display value.
3. calculate(): Perform one calculation using operands and operators from the stacks.
4. reduce(String operator): Calls calculate one or more times based on the current stack contents

(in phase 1 this is basically a pass-through function, you always call calculate exactly once)
5. precedence(String operator): Return the precedence level of an operator (for Phase 2).

In DebugStack.java:

Extend the Stack class to print stack contents after push, pop, and clear operations. For example:

@Override
public E push(E item) {

E result = super.push(item);
System.out.println("Push: " + item + ", Stack: " + this);
return result;

}

Implementation Phases
Phase 1: Basic Functionality

• Implement all the required methods
• Support basic operations (+, -, ×, ÷)
• Add support for constants π and e (hint: handle in the controller similar to digits)
• Process calculations left-to-right without operator precedence
• Implement DebugStack for debugging

Phase 2: Operator Precedence

• Implement the precedence() method to assign priorities to operators
• Modify reduce() and related methods to respect operator precedence
• Ensure that multiplication/division are performed before addition/subtraction

Phase 3: Extensions (Pick one or more)

• Implement parentheses support
• Add scientific functions (sin, cos, tan, sqrt, etc.)
• Add a 2nd button for arcsin, arccos, etc.
• Implement memory functions (M+, M-, MR, MC)
• Create a graphing feature for simple functions
• Support different number systems (binary, octal, hex)

2

• Add unit conversions
• Your idea!

Notes
• The DebugStack implementation should be helpful for visualizing how the stacks change during

operations
• Remember that in Phase 1, operations are performed left-to-right (no operator precedence)
• For constants like π and e, you’ll need to handle these specially in the controller

Example: Calculating a Left-to-Right Expression Using Two Stacks
Here’s a simple example of how to calculate the expression 3 + 425 × 2 using the two-stack approach with
left-to-right evaluation (Phase 1 approach without operator precedence):

Initial State:

• Operand Stack: []
• Operator Stack: []
• Display: “0”

User enters “3”:

• Display: “3”
• No stack changes yet (value is only in display)

User enters “+”:

• Read current display value (3) and push to Operand Stack
• Push + to Operator Stack
• Operand Stack: [3]
• Operator Stack: [+]
• Display: “3”

User enters “4”:

• Display: “4”
• No stack changes yet

User enters “2”:

• Display: “42” (digits accumulate in the display)
• No stack changes yet

User enters “5”:

• Display: “425” (digits accumulate in the display)
• No stack changes yet

User enters “×”:

• Read current display value (425) and push to Operand Stack

• Operand Stack: [3, 425]

3

• Operator Stack: [+]

• Since we have 2 operands and 1 operator, perform calculation:

– Pop 425 and 3 from Operand Stack
– Pop + from Operator Stack
– Calculate: 3 + 425 = 428
– Push 428 to Operand Stack

• After reduction, push × to Operator Stack

• Operand Stack: [428]

• Operator Stack: [×]

• Display: “428”

User enters “2”:

• Display: “2”
• No stack changes yet (value is only in display)

User enters “=”:

• Read current display value (2) and push to Operand Stack

• Operand Stack: [428, 2]

• Operator Stack: [×]

• Since we have 2 operands and 1 operator, perform calculation:

– Pop 2 and 428 from Operand Stack
– Pop × from Operator Stack
– Calculate: 428 × 2 = 856
– Push 856 to Operand Stack

• Since “=” was pressed, we don’t push it to the Operator Stack

• Operand Stack: [856]

• Operator Stack: []

• Display: “856”

Note: In Phase 1, operations are performed strictly left-to-right as shown above (3 + 4 × 2 = 14). In Phase 2
with operator precedence, multiplication would be performed before addition, resulting in 3 + (4 × 2) = 11.

4

	Calculator Assignment Instructions
	Overview of Architecture
	Operand and Operator Stacks
	Methods to Complete
	In CalculatorController.java:
	In CalculatorModel.java:
	In DebugStack.java:

	Implementation Phases
	Phase 1: Basic Functionality
	Phase 2: Operator Precedence
	Phase 3: Extensions (Pick one or more)

	Notes
	Example: Calculating a Left-to-Right Expression Using Two Stacks
	Initial State:
	User enters “3”:
	User enters “+”:
	User enters “4”:
	User enters “2”:
	User enters “5”:
	User enters “×”:
	User enters “2”:
	User enters “=”:

