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Now that you’ve had an introduction to AVL trees, let’s take a step back and look
at where this operation called rotation even comes from, and hopefully end up with
a better understanding of how to balance trees, both by hand and encode.

The Canonical Trees
Let’s start by taking the numbers 1,2,3 and creating every possible valid binary
search tree from these three numbers. Draw your search trees in the space below.

Work in the margin

You should come up with five search trees. You’ll notice only one of them is balanced
and the other four have balance factor of plus or minus 2. It turns out that every
AVL tree, as soon as it becomes unbalanced, can be written as one of these five
search trees. So if we can balance any of these five trees, we’ll see how AVL tree
balancing actually works.

Let’s agree to call these trees the 123 tree, the 132 tree, the 213 tree, the 321 tree,
and the 312 tree.

If you think about it, there’s only one way to balance the four imbalanced trees and
that’s to convert any of them to the 213 tree. No confusing “rotations” necessary:
all trees end in the same place! Of course, in most cases, the trees are working with
don’t just have these three nodes. They’ll have other subtrees hanging off of them
so let’s consider this case.

Adding Subtrees
Let’s imagine we have a bunch of real numbers, including 1, 2 and 3 and we want to
put them in an AVL tree. If you think about the intervals of the real line resulting
from partitioning based on these three numbers, you get four partitions: numbers
less than one, numbers greater than three, numbers between one and two, and
numbers between two and three. Let’s call these intervals ABCD and write them as
follows:

(A) . . . 1 . . . (B) . . . 2 . . . (C) . . . 3 . . . (D)

Where A,B,C,D are intervals of numbers. Each of these intervals corresponds to a
sub tree in our AVL tree. Take each of the five trees you created above and add
subtrees for A,B,C and D. Make sure that your trees are each in the appropriate
location compared to the numbers 1, 2 and 3.

Work in the margin

If you compare each of the four imbalanced trees to the balanced 213 tree, now
with the subtrees added, you should see that each of the four imbalanced trees
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correlates to one of the four rotations you read about last class. The 123 tree is
balanced with a left rotation, the 321 tree is balanced with a right rotation, the 132
tree is balanced with a right-left rotation, and finally the 312 tree is balanced with
a left-right rotation. Whatever name you give these rotations they’re all turning
imbalanced tree into exactly the same, balanced, 213 tree.

Examples
Let’s work through a moderate size example. Look at the AVL tree below it’s
currently balanced, but it won’t be for long. Insert the number 1. Once you’ve
added 1 to the tree, find the lowest node in the tree that has now become unbalanced.

Figure 1: Medium tree example

The unbalanced tree is the sub tree rooted at 6. Now follow the path from 6 to the
node that was just inserted. Draw a box around the first three numbers on that
path. These numbers are arranged like a “321” tree, and can be balanced with a
right rotation. Identify each of the 4 subtrees A,B,C,D (use empty set to represent
any missing trees) and draw a new tree with this subtree now balanced.

Work in the margin

Now try inserting the number 5 and go through the same balancing process.

Work in the margin

Try a larger example. In the following tree, perform each of the following insertions
(each time starting over from the same beginning tree): 5, 140, 70, 115

Work in the margin

Algorithmic Thinking
Now let’s write some pseudocode to perform the rotations. This is where it proves
advantageous to realize that these four balancing operations are each built from
one or two smaller balancing operations. If you didn’t realize that, you could write
four separate balancing routines and they would work just fine, but let’s stick with
the traditional implementation and implement left balance and right balance first
as two different methods. To keep things consistent use the variable names.”one”
“two” and “three” and “A” “B” “C” “D” as appropriate to identify the nodes in the
subtrees that you’re changing in each method. You may be surprised at how few
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Figure 2: Big tree example

changes are actually necessary. Be sure in each method to return the root of the
newly balanced sub tree.

Node leftRotate(Node one)

Node rightRotate(Node three)

Now you’ve written left and right rotate, you can write left-right and right-left
rotations by calling left and right rotations on appropriate nodes and subtrees.

Node leftRightRotate(Node three)

Node rightLeftRotate(Node one)

The next thing we need to figure out is when each of these rotations is appropriate.
If you look at our four imbalanced trees, they each have very different shapes. In the
case of an insertion, a sub tree can become imbalanced when you insert a new node.
That new node has to be a leaf. Look at the leaves of each of the four imbalanced
trees we started with. You can tell, which of the four rotations is necessary by
determining, first, if the balance factor is positive or negative (indicating a right or
left imbalance), and secondly, if the new leaf node is greater than or less than its
parent node. In the space below bright four different conditions which exhaustively
cover the four cases of an imbalanced tree, and then say which balancing method
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you should call for each case. Let’s assume that “node” is the root of a sub tree
with balance factor greater than one or less than negative one. Also assume “data”
is the integer value that has just been added to the AVL tree.

// left rotate case
if

// right rotate case
if

// left-right rotate case
if

// right-left rotate case
if

Finally, we have a bit of housekeeping to make this work with our existing BinaryTree
insert method. You’ll want to add a height field that stores the height of each node
(leaves have height 1 and each subtree height is 1 more than its tallest subtree.)
Finally, define a height(Node n) method that returns the height of the node, or 0
if the node is null (this helps keep the code cleaner).

Assignment
To finish this lesson, implement AVL tree rotation in your BinaryTree class by
modifying your existing insert method (and other parts of the class as needed)
You can test the accuracy first by inserting the numbers 1 - 32 and making sure the
resulting tree is correct. Next, insert the integers 1-1,000,000 and it should take less
than one second, or so.
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