Linear Regression

Given n points (z1,y1) ... (Zn,yn) and an assumed relation y = f(x) + ¢, € ~
N(u,0) we want to find a model g; = ax; + b such that the residual squared
error
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is minimized.

RSS is a function of the line parameters a and b. To minimize it we set both
partial derivatives to zero. (This could technically find a maximum — but it’s
reasonably clear this function has no maximum value because the error can
always be increased.)

Take partial derivatives
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And solve
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Since §; = ax; + b
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by Cramer’s rule
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Taking determinants,
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Interpretation as a ratio of variances
Students of statistics may appreciate the following manipulations

Definition of covariance

E(zy) — E(z)E(y) = Cov(z,y)
Definition of variance

Var(z) = E [(z — p)?]

Lemma



Var(z) = E [(z — p)?]
= E (2%) — 2uEz] + B[y
= E [2*] — 2E[z]* + 1°
= E [2%] — E[z]?

Manipulating the denominator of the equation for a on the previous page,

W= () = (;ng_ (anf)
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SO
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