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4.1. A test result

4.2. Bayes Theorem

We’ll begin by challenging our common intuition about the concept of “accuracy” specifically when accuracy is

applied to a diagnostic test.

4.1. A test result
Carl goes to the doctor and takes a test to see if he has an infection. The general incidence rate of the infection in

the local population is 1%. The test he is taking to determine the presence of the infection has an accuracy of

97%. If Carl tests positive, how concerned should he be that he has the infection?

To measure Carl’s “worry coefficient” we want to know , or, the probability that he has the infection, given

that he had a positive test result. We know , because the test is 97% accurate so if he has it, the

test will be positive 97% of the time.

Logically the ratio needed is the number of people who have a positive test result and are infected, divided by the

number of people who have a positive test result total. Out of 1000 people, 10 of them is infected. 97% of the 10

will get a positive test result, and 3% of the 990 uninfected will get a positive test result. This says

and the number of infected with a positive test result is

Giving a worry coefficient of , or a 24.6% chance of being infected given a positive test result.

So what can be made of the “97%” accuracy claim? Well it sounds great, but it’s wrong 3% of the time. And only

1% of the population has an infection. So the size of the error is actually larger than the number of infected

people. High accuracy on rare events can be misleading and requires you to know more context to properly

interpret. This is an early example of a critical lesson in machine learning: accuracy alone is not an informative,
and is occasionally a deceptive, metric.

Before we delve too deeply into variations on accuracy, let’s pause to look at Bayes’ Theorem, which tells us how

to compute  if we know .

P(I|+)

P(+|I) = 0.97

#{positive test cases} = (0.97)(10) + (0.03)(990) = 9.7 + 29.7 = 39.4

#{true positive test results} = (10)(0.97) = 9.7

9.7/39.4 = 0.246

P(I|+) P(+|I)



4.2. Bayes Theorem
Bayes’ Theorem gives us a way to invert conditional probabilities. The formula comes from the definition of

conditional probability

this implies the following

Solving for  we get

Though this is the final form, in practice you will need to compute  using the following

which says the probability of  is the sum of the probability of  given  and  given not . (  is either true or

false so these are the only two options)

Applied to the above example

In the accompanying lab you will explore Bayes’ Theorem and the ways in which the final result depends on both

the accuracy of the test and the incidence rate of the infection.

P(A|B) =
P(A ∩ B)

P(B)

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)
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P(B) = P(B|A)P(A) + P(B|A)P(A)
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P(I|+) =
P(+|I)P(I)

P(+)

=
(0.97)(0.01)

P(+|I)P(I) + P(+|Ī)P(Ī)

=
(0.97)(0.01)

(0.97)(0.01) + (0.03)(0.99)

= 0.2462


