Boolean Algebra Worksheet
Boolean Algebra Worksheet
Instructions
Use Java boolean notation: && (AND), || (OR), ! (NOT)
Variables: A, B, C, D represent boolean values (true or false)
Part 1: Apply DeMorgan’s Laws
Simplify the following expressions using DeMorgan’s laws:
-
!(A && B) -
!(A || B) -
!(A && B && C) -
!(!A || B) -
!(A || !B) && C -
!((A && B) || C) -
!(A && (B || C)) || D -
!((A || B) && (C || D))
Part 2: Identity Verification
Determine whether each identity is TRUE or FALSE. Show your work using boolean simplification rules:
-
A && (B || C) = (A && B) || (A && C) -
A || (A && B) = A -
(A || B) && (A || C) = A || (B && C) -
(A || B) && (!A || B) = B -
A && (B || C) && (B || !C) = A && B -
(A && B) || (A && C) || (!A && B && C) = (A && B) || (A && C)
Part 3: Simplify the Following
Reduce each expression to its simplest form:
-
A && A -
(A || B) && (!A || B) -
A && (B || !B) -
(A && B) || (A && !B) || (!A && C) -
(A || B) && (A || C) && (B || C) -
(A && B && C) || (A && B && !C) || (A && !B && C) || (!A && B && C)