Matrix Inversion

You can invert a matrix A by creating the n x 2n matrix [A I]. This means
you stack A right next to the n x n identity matrix. Then perform Gaussian
Elimination on A just like you were solving a system of equations. You will
end up with the matrix [I A~!]. Sounds easy. But matrix inversion is highly
unstable numerically. You will investigate in this lab.

1. The Hilbert matrix a;; = 1/(i+ j+1) is notoriously unstable. (Read about
it online; note that our definition uses “+1” because python and math are
different sometimes.)

2. Implement matrix inversion and check it on some small Hilbert-matrices
random real matrices. (Check by verifying AA~! = I. This will not be
exact so account for rounding errors).

3. Make a plot of matrix size vs. error. Error is defined as the Frobenius
norm of the matrix (AA=! — 1) so err = ||(AA™r — I)||F. (It’s trivial to
do in numpy so look it up!)

4. Implement GEPP (Gaussian elimination with partial pivoting) and make
a similar plot to part 2. You should see the errors decrease with GEPP.

5. Finally, plot the error in the inherent np.linalg. inv function and compare
it to yours.

You can seen an example of GEPP here. Note they do NOT make the diagonal
all 1’s like we do — but you can keep doing it our way. The main idea is the
pivoting.

I wrote this after a short investigation of Hilbert matrices which are
known to be poorly conditioned (the condition number grows quite
predictably, if you want to look it up). I assumed that GEPP would
behave poorly in direct correlation to the condition number but it
does not. Random matrices provide a much cleaner pattern.

https://web.mit.edu/10.001/Web/Course_Notes/GaussElimPivoting.html

	Matrix Inversion

