
Strassen’s Algorithm (Optional Extension)
Matrix multiplication in the naive implementation requires O(n3) floating point
operations on a matrix with n2 entries. In fact it seems unlikely one could do
better. Each of the n2 entries in the product requires a dot product of two length
n vectors. Yet in 1969, Volken Strassen shocked numerical analysists with his
algorithm requiring O(nlog2 7) ≈ O(n2.73) floating point operations. The search
for a lower bound on the complexity of matrix multiplication continues today,
with recent results hovering around O(n2.3).

Goal
You will implement Strassen’s algorithm using Python and numpy. You will
then perform tests to verify the achieved asymptotic running time of Strassen is
actually lower than the running time of your previously implemented (non-numpy)
matrix multiplication.

Details
Read up on Strassen online (wikipedia has a good article, for example) and
implement his algorithm using numpy. Your algorithm can assume n = 2k.
Making Strassen work otherwise requires really messy memory management
best left to C-type languages. Test correctness of your code on several random
matrices by comparing your output to numpy (A@B). To simplify things, you
should work with integer matrices only (floating-point introduces rounding
errors that we don’t want to deal with.)

Once you know it works, do some regression analysis on your original algorithm
and Strassen and compare their running times. The easiest way to do this is in
Python is with timeit.timeit. Here’s an example

import timeit

i = 4
A = np.random.randint(-10,10,(2**i, 2**i))
timeit.timeit('A@A', number=25, globals = globals())/25

The timeit function evaluates the first string argument. If the string references
values defined elsewhere you need to pass in the current state of the python
interpreter which is what the globals argument is for. Note we divide by 25 to
get an average time per operation. (Running times are usually very centrally
distributed so you need not worry about outliers – the mean is a perfectly good
measure of center.)

Warning – these algorithms run pretty quickly on n = 26 or n = 27 but after
that become very slow. You will need to proceed judiciously but also gather
enough data for a valid conclusion. (In my testing I let my Lenovo laptop run
for about 30 minutes).

1

N.B.: Strassen is recursive and has a base case. Please use the base case n = 4
and return A@B. This will ensure we have similar results.

Results
You should graph the averaged running times of Strassen and Naive multiplication
on the same graph. Then perform an appropriate regression analysis to determine
the respective orders of growth to prove Strassen is asymptotically faster. Support
your conclusions with calculations and graphs. (See the Gaussian elimination
lab for regression operations).

Finally, just for humility’s sake, print out a nicely formatted table comparing
the above two algorithms with numpy’s built in multiply operation. (Don’t feel
too bad, it’s using a compiled C library).

2

	Strassen’s Algorithm (Optional Extension)
	Goal
	Details
	Results

