Linear Regression

Given n points (x1,41) ... (Zn,yn) and an assumed relation y = f(x) + ¢, € ~
N(p,0) we want to find a model g; = az; + b such that the residual squared
error

RSS(a,b) = > (i — vi)*
i=1
is minimized.

RSS is a function of the line parameters a and b. To minimize it we set both
partial derivatives to zero. (This could technically find a maximum — but it’s
reasonably clear this function has no maximum value because the error can
always be increased.)

Take partial derivatives
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Since
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And solve
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Since ; = ax; + b
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by Cramer’s rule
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Taking determinants,
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Interpretation as a ratio of variances
Students of statistics may appreciate the following manipulations
Definition of covariance

E(ry) — E(z)E(y) = Cov(z,y)

Definition of variance

Lemma

Manipulating the denominator of the equation for a on the previous page,

nYat— (Yw) = n? (izx?‘ (an)>
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And the numerator

SO

E
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[xy] — popy  Cov(z,y)

a =

Elz] — p2 Vav(z)
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