Life Expectancy¶
We are going to take a quick tour of machine learning by working on an example dataset. The mushroom dataset categorizes mushrooms as 'poisonous' or 'edible' and collects several descriptive properties of each mushroom example.
import pandas as pd
import os
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
pd.options.display.max_rows = 20 # Shows 20 rows
pd.options.display.max_columns = 20 # Shows 20 columns
Loading the dataset¶
# These lines would load the data locally
data_root = "./"
filename = "Life_Expectancy_Data.csv"
filepath = os.path.join(data_root, filename)
# We'll fetch it directly from the web
# data_url = "https://aet-cs.github.io/white/ML/lessons/mushroom.csv"
df = pd.read_csv(filepath)
df
| Country | Year | Status | Life expectancy | Adult Mortality | infant deaths | Alcohol | percentage expenditure | Hepatitis B | Measles | ... | Polio | Total expenditure | Diphtheria | HIV/AIDS | GDP | Population | thinness 1-19 years | thinness 5-9 years | Income composition of resources | Schooling | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | Afghanistan | 2015 | Developing | 65.0 | 263.0 | 62 | 0.01 | 71.279624 | 65.0 | 1154 | ... | 6.0 | 8.16 | 65.0 | 0.1 | 584.259210 | 33736494.0 | 17.2 | 17.3 | 0.479 | 10.1 |
| 1 | Afghanistan | 2014 | Developing | 59.9 | 271.0 | 64 | 0.01 | 73.523582 | 62.0 | 492 | ... | 58.0 | 8.18 | 62.0 | 0.1 | 612.696514 | 327582.0 | 17.5 | 17.5 | 0.476 | 10.0 |
| 2 | Afghanistan | 2013 | Developing | 59.9 | 268.0 | 66 | 0.01 | 73.219243 | 64.0 | 430 | ... | 62.0 | 8.13 | 64.0 | 0.1 | 631.744976 | 31731688.0 | 17.7 | 17.7 | 0.470 | 9.9 |
| 3 | Afghanistan | 2012 | Developing | 59.5 | 272.0 | 69 | 0.01 | 78.184215 | 67.0 | 2787 | ... | 67.0 | 8.52 | 67.0 | 0.1 | 669.959000 | 3696958.0 | 17.9 | 18.0 | 0.463 | 9.8 |
| 4 | Afghanistan | 2011 | Developing | 59.2 | 275.0 | 71 | 0.01 | 7.097109 | 68.0 | 3013 | ... | 68.0 | 7.87 | 68.0 | 0.1 | 63.537231 | 2978599.0 | 18.2 | 18.2 | 0.454 | 9.5 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 2933 | Zimbabwe | 2004 | Developing | 44.3 | 723.0 | 27 | 4.36 | 0.000000 | 68.0 | 31 | ... | 67.0 | 7.13 | 65.0 | 33.6 | 454.366654 | 12777511.0 | 9.4 | 9.4 | 0.407 | 9.2 |
| 2934 | Zimbabwe | 2003 | Developing | 44.5 | 715.0 | 26 | 4.06 | 0.000000 | 7.0 | 998 | ... | 7.0 | 6.52 | 68.0 | 36.7 | 453.351155 | 12633897.0 | 9.8 | 9.9 | 0.418 | 9.5 |
| 2935 | Zimbabwe | 2002 | Developing | 44.8 | 73.0 | 25 | 4.43 | 0.000000 | 73.0 | 304 | ... | 73.0 | 6.53 | 71.0 | 39.8 | 57.348340 | 125525.0 | 1.2 | 1.3 | 0.427 | 10.0 |
| 2936 | Zimbabwe | 2001 | Developing | 45.3 | 686.0 | 25 | 1.72 | 0.000000 | 76.0 | 529 | ... | 76.0 | 6.16 | 75.0 | 42.1 | 548.587312 | 12366165.0 | 1.6 | 1.7 | 0.427 | 9.8 |
| 2937 | Zimbabwe | 2000 | Developing | 46.0 | 665.0 | 24 | 1.68 | 0.000000 | 79.0 | 1483 | ... | 78.0 | 7.10 | 78.0 | 43.5 | 547.358878 | 12222251.0 | 11.0 | 11.2 | 0.434 | 9.8 |
2938 rows × 22 columns
describe gives a quick overview of each feature
df.describe()
| Year | Life expectancy | Adult Mortality | infant deaths | Alcohol | percentage expenditure | Hepatitis B | Measles | BMI | under-five deaths | Polio | Total expenditure | Diphtheria | HIV/AIDS | GDP | Population | thinness 1-19 years | thinness 5-9 years | Income composition of resources | Schooling | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| count | 2938.000000 | 2928.000000 | 2928.000000 | 2938.000000 | 2744.000000 | 2938.000000 | 2385.000000 | 2938.000000 | 2904.000000 | 2938.000000 | 2919.000000 | 2712.00000 | 2919.000000 | 2938.000000 | 2490.000000 | 2.286000e+03 | 2904.000000 | 2904.000000 | 2771.000000 | 2775.000000 |
| mean | 2007.518720 | 69.224932 | 164.796448 | 30.303948 | 4.602861 | 738.251295 | 80.940461 | 2419.592240 | 38.321247 | 42.035739 | 82.550188 | 5.93819 | 82.324084 | 1.742103 | 7483.158469 | 1.275338e+07 | 4.839704 | 4.870317 | 0.627551 | 11.992793 |
| std | 4.613841 | 9.523867 | 124.292079 | 117.926501 | 4.052413 | 1987.914858 | 25.070016 | 11467.272489 | 20.044034 | 160.445548 | 23.428046 | 2.49832 | 23.716912 | 5.077785 | 14270.169342 | 6.101210e+07 | 4.420195 | 4.508882 | 0.210904 | 3.358920 |
| min | 2000.000000 | 36.300000 | 1.000000 | 0.000000 | 0.010000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 3.000000 | 0.37000 | 2.000000 | 0.100000 | 1.681350 | 3.400000e+01 | 0.100000 | 0.100000 | 0.000000 | 0.000000 |
| 25% | 2004.000000 | 63.100000 | 74.000000 | 0.000000 | 0.877500 | 4.685343 | 77.000000 | 0.000000 | 19.300000 | 0.000000 | 78.000000 | 4.26000 | 78.000000 | 0.100000 | 463.935626 | 1.957932e+05 | 1.600000 | 1.500000 | 0.493000 | 10.100000 |
| 50% | 2008.000000 | 72.100000 | 144.000000 | 3.000000 | 3.755000 | 64.912906 | 92.000000 | 17.000000 | 43.500000 | 4.000000 | 93.000000 | 5.75500 | 93.000000 | 0.100000 | 1766.947595 | 1.386542e+06 | 3.300000 | 3.300000 | 0.677000 | 12.300000 |
| 75% | 2012.000000 | 75.700000 | 228.000000 | 22.000000 | 7.702500 | 441.534144 | 97.000000 | 360.250000 | 56.200000 | 28.000000 | 97.000000 | 7.49250 | 97.000000 | 0.800000 | 5910.806335 | 7.420359e+06 | 7.200000 | 7.200000 | 0.779000 | 14.300000 |
| max | 2015.000000 | 89.000000 | 723.000000 | 1800.000000 | 17.870000 | 19479.911610 | 99.000000 | 212183.000000 | 87.300000 | 2500.000000 | 99.000000 | 17.60000 | 99.000000 | 50.600000 | 119172.741800 | 1.293859e+09 | 27.700000 | 28.600000 | 0.948000 | 20.700000 |
Data Exploration¶
Show all the columns. Target is 'Life expectancy'
df.columns
Index(['Country', 'Year', 'Status', 'Life expectancy', 'Adult Mortality',
'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatitis B',
'Measles', 'BMI', 'under-five deaths', 'Polio', 'Total expenditure',
'Diphtheria', 'HIV/AIDS', 'GDP', 'Population', 'thinness 1-19 years',
'thinness 5-9 years', 'Income composition of resources', 'Schooling'],
dtype='object')
Get the size of the dataframe. Shape returns (rows, cols)
df.shape
(2938, 22)
Let's get all the data types
df.dtypes
Country object
Year int64
Status object
Life expectancy float64
Adult Mortality float64
...
Population float64
thinness 1-19 years float64
thinness 5-9 years float64
Income composition of resources float64
Schooling float64
Length: 22, dtype: object
df.hist(target)
array([[<Axes: title={'center': 'Life expectancy'}>]], dtype=object)
Correlation matrix heat map¶
Let's get a quick visual representation of the relationshop between features in this dataset.
df_heat = df.drop(["Country", "Status"], axis = 1)
corr_matrix = df_heat.corr()
plt.figure(figsize=(16, 6))
# define the mask to set the values in the upper triangle to True
mask = np.triu(np.ones_like(corr_matrix, dtype=np.bool))
heatmap = sns.heatmap(corr_matrix, mask=mask, vmin=-1, vmax=1, annot=True, cmap='BrBG')
heatmap.set_title('Life Expectancy Correlation Heatmap', fontdict={'fontsize':14}, pad=16);
plt.show()
Which features seem to be important?
row_filter = abs(corr_matrix[target])>0.1
top_features = pd.DataFrame(corr_matrix[target][row_filter])
top_features.sort_values(by=target)
| Life expectancy | |
|---|---|
| Adult Mortality | -0.696359 |
| HIV/AIDS | -0.556556 |
| thinness 1-19 years | -0.477183 |
| thinness 5-9 years | -0.471584 |
| under-five deaths | -0.222529 |
| infant deaths | -0.196557 |
| Measles | -0.157586 |
| Year | 0.170033 |
| Total expenditure | 0.218086 |
| Hepatitis B | 0.256762 |
| percentage expenditure | 0.381864 |
| Alcohol | 0.404877 |
| GDP | 0.461455 |
| Polio | 0.465556 |
| Diphtheria | 0.479495 |
| BMI | 0.567694 |
| Income composition of resources | 0.724776 |
| Schooling | 0.751975 |
| Life expectancy | 1.000000 |
Data Modeling¶
We're finally ready to do some data modeling using scikit-learn. In this cell we import some methods we'll use, reload the data frame (just to be safe), re-pre-process-it, and one-hot-encode all the categorical variables.
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report
Linear Regression¶
def get_data(filename):
df = pd.read_csv(filename)
return df
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OrdinalEncoder
def pre_process_data(df, one_hot_encode = False):
target = "Life expectancy"
simple_median = SimpleImputer(strategy='median')
simple_most_freq = SimpleImputer(strategy='most_frequent')
num_cols = df.select_dtypes(include=np.number).columns
cat_cols = df.select_dtypes(include=object).columns
df[num_cols] = simple_median.fit_transform(df[num_cols])
df[cat_cols] = simple_most_freq.fit_transform(df[cat_cols])
# O_encoder = OrdinalEncoder()
# df[cat_cols]= O_encoder.fit_transform(df[cat_cols])
if one_hot_encode:
df = pd.get_dummies(df, dtype=int)
return df
def get_test_train(df, test_size = 0.2, random_state = 42):
target = "Life expectancy"
X = df.drop(target, axis=1)
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=test_size, random_state=random_state)
return X_train, X_test, y_train, y_test
df = get_data(filename)
df = pre_process_data(df, one_hot_encode = True)
X_train, X_test, y_train, y_test = get_test_train(df)
clf = LinearRegression()
model = clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(f"Train R-squared = {r2_score(clf.predict(X_train), y_train):5.3}")
print(f"Test R-squared = {r2_score(y_pred, y_test):5.3}")
Train R-squared = 0.962 Test R-squared = 0.964
plt.scatter(y_test, y_pred);
plt.plot([40,90],[40,90],color='red')
plt.title("Predicted LE vs. Real LE")
plt.xlabel("True Life Expectancy")
plt.ylabel("Predicted LE")
Text(0, 0.5, 'Predicted LE')
Advanced Techniques¶
import matplotlib.pyplot as plt
import pandas as pd
# Assuming `df` is your DataFrame with 20 numerical features and 'LifeExpectancy' as the target variable
target = 'Life expectancy'
df = get_data(filename)
df = pre_process_data(df)
features = df.drop(target, axis=1).select_dtypes(include=['number']).columns
# Set up a grid of subplots
num_features = len(features)
num_cols = 5 # Adjust this to your preference
num_rows = (num_features + num_cols - 1) // num_cols # Calculates rows needed
plt.figure(figsize=(15, num_rows * 3))
for i, feature in enumerate(features, 1):
plt.subplot(num_rows, num_cols, i)
plt.scatter(df[feature], df[target], alpha=0.5)
plt.title(f'{feature} vs. LE')
plt.xlabel(feature)
plt.ylabel(target)
plt.tight_layout()
plt.show()
df.hist(figsize=(15,15));
Pre-processing¶
import statsmodels.api as sm
# Add a constant to the model (intercept)
# Fit the OLS model
model = sm.OLS(y_train, X_train).fit()
# Get a summary of the regression
print(model.summary())
OLS Regression Results
==============================================================================
Dep. Variable: Life expectancy R-squared: 0.963
Model: OLS Adj. R-squared: 0.960
Method: Least Squares F-statistic: 267.9
Date: Wed, 09 Oct 2024 Prob (F-statistic): 0.00
Time: 13:15:47 Log-Likelihood: -4758.9
No. Observations: 2350 AIC: 9938.
Df Residuals: 2140 BIC: 1.115e+04
Df Model: 209
Covariance Type: nonrobust
================================================================================================================================
coef std err t P>|t| [0.025 0.975]
--------------------------------------------------------------------------------------------------------------------------------
Year 0.2628 0.012 21.916 0.000 0.239 0.286
Adult Mortality -0.0023 0.001 -4.404 0.000 -0.003 -0.001
infant deaths 0.0780 0.012 6.412 0.000 0.054 0.102
Alcohol -0.0677 0.027 -2.542 0.011 -0.120 -0.015
percentage expenditure 0.0001 5.68e-05 2.340 0.019 2.15e-05 0.000
Hepatitis B -0.0058 0.002 -2.601 0.009 -0.010 -0.001
Measles -9.721e-06 4.84e-06 -2.008 0.045 -1.92e-05 -2.26e-07
BMI -0.0051 0.003 -1.513 0.130 -0.012 0.002
under-five deaths -0.0572 0.008 -6.785 0.000 -0.074 -0.041
Polio 0.0031 0.003 1.203 0.229 -0.002 0.008
Total expenditure -0.0454 0.025 -1.811 0.070 -0.095 0.004
Diphtheria 0.0078 0.003 2.866 0.004 0.002 0.013
HIV/AIDS -0.3209 0.017 -18.573 0.000 -0.355 -0.287
GDP -1.317e-05 8.83e-06 -1.492 0.136 -3.05e-05 4.14e-06
Population -1.166e-09 1.02e-09 -1.138 0.255 -3.18e-09 8.43e-10
thinness 1-19 years 0.0204 0.032 0.645 0.519 -0.042 0.082
thinness 5-9 years 0.0319 0.032 1.012 0.312 -0.030 0.094
Income composition of resources -0.1747 0.511 -0.342 0.733 -1.177 0.828
Schooling 0.1478 0.046 3.234 0.001 0.058 0.237
Country_Afghanistan -12.5602 0.654 -19.206 0.000 -13.843 -11.278
Country_Albania 4.1251 0.546 7.562 0.000 3.055 5.195
Country_Algeria 1.9191 0.572 3.356 0.001 0.798 3.040
Country_Angola -19.1966 0.634 -30.267 0.000 -20.440 -17.953
Country_Antigua and Barbuda 4.8363 0.613 7.896 0.000 3.635 6.038
Country_Argentina 3.8199 0.590 6.479 0.000 2.664 4.976
Country_Armenia 2.4163 0.601 4.018 0.000 1.237 3.596
Country_Australia -11.7984 0.828 -14.243 0.000 -13.423 -10.174
Country_Austria -11.4436 0.922 -12.409 0.000 -13.252 -9.635
Country_Azerbaijan -0.5232 0.536 -0.977 0.329 -1.574 0.527
Country_Bahamas 3.6949 0.627 5.896 0.000 2.466 4.924
Country_Bahrain 4.0994 0.599 6.841 0.000 2.924 5.275
Country_Bangladesh -2.7625 0.704 -3.922 0.000 -4.144 -1.381
Country_Barbados 3.3191 0.612 5.427 0.000 2.120 4.518
Country_Belarus -0.4641 0.634 -0.732 0.465 -1.708 0.780
Country_Belgium -12.1375 0.887 -13.676 0.000 -13.878 -10.397
Country_Belize -1.3670 0.576 -2.373 0.018 -2.497 -0.237
Country_Benin -12.3161 0.594 -20.723 0.000 -13.482 -11.151
Country_Bhutan -5.6748 0.721 -7.868 0.000 -7.089 -4.260
Country_Bolivia (Plurinational State of) -3.0289 0.580 -5.225 0.000 -4.166 -1.892
Country_Bosnia and Herzegovina 5.1239 0.611 8.389 0.000 3.926 6.322
Country_Botswana -9.2538 0.582 -15.888 0.000 -10.396 -8.112
Country_Brazil 1.5147 0.631 2.402 0.016 0.278 2.751
Country_Brunei Darussalam 4.6145 0.537 8.597 0.000 3.562 5.667
Country_Bulgaria -19.4348 0.925 -21.002 0.000 -21.250 -17.620
Country_Burkina Faso -12.7039 0.750 -16.938 0.000 -14.175 -11.233
Country_Burundi -13.3554 0.638 -20.919 0.000 -14.607 -12.103
Country_Cabo Verde 1.3837 0.581 2.381 0.017 0.244 2.523
Country_Cambodia -6.2931 0.614 -10.243 0.000 -7.498 -5.088
Country_Cameroon -13.7371 0.599 -22.928 0.000 -14.912 -12.562
Country_Canada 10.3186 0.646 15.966 0.000 9.051 11.586
Country_Central African Republic -18.2718 0.665 -27.468 0.000 -19.576 -16.967
Country_Chad -17.1495 0.699 -24.536 0.000 -18.520 -15.779
Country_Chile 8.0832 0.595 13.578 0.000 6.916 9.251
Country_China 0.6775 1.005 0.674 0.500 -1.293 2.648
Country_Colombia 2.3495 0.518 4.536 0.000 1.334 3.365
Country_Comoros -8.9342 0.638 -13.996 0.000 -10.186 -7.682
Country_Congo -10.2120 0.578 -17.680 0.000 -11.345 -9.079
Country_Cook Islands -0.3522 1.929 -0.183 0.855 -4.135 3.430
Country_Costa Rica 7.5549 0.510 14.817 0.000 6.555 8.555
Country_Croatia -16.2245 0.946 -17.148 0.000 -18.080 -14.369
Country_Cuba 6.3740 0.523 12.186 0.000 5.348 7.400
Country_Cyprus -12.6044 0.931 -13.539 0.000 -14.430 -10.779
Country_Czechia -15.3735 0.987 -15.578 0.000 -17.309 -13.438
Country_Côte d'Ivoire -18.7114 0.621 -30.153 0.000 -19.928 -17.494
Country_Democratic People's Republic of Korea -2.3606 0.531 -4.446 0.000 -3.402 -1.319
Country_Democratic Republic of the Congo -14.0841 0.704 -20.001 0.000 -15.465 -12.703
Country_Denmark -13.7976 0.859 -16.069 0.000 -15.482 -12.114
Country_Djibouti -8.6067 0.672 -12.802 0.000 -9.925 -7.288
Country_Dominica -0.5753 1.920 -0.300 0.765 -4.341 3.191
Country_Dominican Republic 1.6690 0.540 3.091 0.002 0.610 2.728
Country_Ecuador 3.6705 0.518 7.080 0.000 2.654 4.687
Country_Egypt -0.0465 0.604 -0.077 0.939 -1.232 1.139
Country_El Salvador 0.6517 0.536 1.216 0.224 -0.400 1.703
Country_Equatorial Guinea -12.8233 0.633 -20.267 0.000 -14.064 -11.582
Country_Eritrea -9.2433 0.669 -13.826 0.000 -10.554 -7.932
Country_Estonia 3.7999 0.638 5.960 0.000 2.550 5.050
Country_Ethiopia -7.9965 0.686 -11.649 0.000 -9.343 -6.650
Country_Fiji -2.9123 0.576 -5.053 0.000 -4.043 -1.782
Country_Finland 9.4469 0.584 16.165 0.000 8.301 10.593
Country_France 10.8405 0.672 16.124 0.000 9.522 12.159
Country_Gabon -5.7206 0.571 -10.017 0.000 -6.841 -4.601
Country_Gambia -10.2851 0.564 -18.248 0.000 -11.390 -9.180
Country_Georgia 2.5948 0.535 4.848 0.000 1.545 3.644
Country_Germany -11.6530 0.891 -13.086 0.000 -13.399 -9.907
Country_Ghana -8.8819 0.622 -14.290 0.000 -10.101 -7.663
Country_Greece 10.6086 0.662 16.018 0.000 9.310 11.907
Country_Grenada 1.6641 0.656 2.537 0.011 0.378 2.950
Country_Guatemala 1.6711 0.588 2.843 0.005 0.518 2.824
Country_Guinea -13.2949 0.667 -19.928 0.000 -14.603 -11.987
Country_Guinea-Bissau -13.7809 0.658 -20.955 0.000 -15.071 -12.491
Country_Guyana -4.4222 0.587 -7.534 0.000 -5.573 -3.271
Country_Haiti -9.4562 0.618 -15.312 0.000 -10.667 -8.245
Country_Honduras 2.4061 0.542 4.436 0.000 1.342 3.470
Country_Hungary -18.5916 0.880 -21.119 0.000 -20.318 -16.865
Country_Iceland -10.9866 0.830 -13.242 0.000 -12.614 -9.359
Country_India -8.7540 2.657 -3.295 0.001 -13.965 -3.543
Country_Indonesia -4.3764 0.720 -6.076 0.000 -5.789 -2.964
Country_Iran (Islamic Republic of) 2.2397 0.661 3.390 0.001 0.944 3.535
Country_Iraq -0.6459 0.566 -1.140 0.254 -1.757 0.465
Country_Ireland -13.0366 0.854 -15.262 0.000 -14.712 -11.361
Country_Israel 9.8839 0.542 18.237 0.000 8.821 10.947
Country_Italy -10.2338 0.897 -11.414 0.000 -11.992 -8.476
Country_Jamaica 3.7132 0.519 7.154 0.000 2.695 4.731
Country_Japan -10.7261 0.915 -11.719 0.000 -12.521 -8.931
Country_Jordan 1.6096 0.628 2.565 0.010 0.379 2.840
Country_Kazakhstan -4.1239 0.530 -7.783 0.000 -5.163 -3.085
Country_Kenya -9.8681 0.701 -14.078 0.000 -11.243 -8.494
Country_Kiribati -5.8018 0.560 -10.359 0.000 -6.900 -4.703
Country_Kuwait 2.3244 0.572 4.060 0.000 1.202 3.447
Country_Kyrgyzstan -1.7812 0.573 -3.108 0.002 -2.905 -0.657
Country_Lao People's Democratic Republic -8.6250 0.652 -13.220 0.000 -9.904 -7.346
Country_Latvia -19.5572 0.913 -21.427 0.000 -21.347 -17.767
Country_Lebanon 2.7358 0.551 4.968 0.000 1.656 3.816
Country_Lesotho -13.7909 0.687 -20.083 0.000 -15.138 -12.444
Country_Liberia -11.8216 0.637 -18.548 0.000 -13.071 -10.572
Country_Libya 0.8550 0.561 1.524 0.128 -0.245 1.955
Country_Lithuania -19.8510 0.910 -21.818 0.000 -21.635 -18.067
Country_Luxembourg -12.1310 0.936 -12.957 0.000 -13.967 -10.295
Country_Madagascar -7.3647 0.611 -12.063 0.000 -8.562 -6.167
Country_Malawi -14.5938 0.624 -23.372 0.000 -15.818 -13.369
Country_Malaysia 2.0359 0.544 3.741 0.000 0.969 3.103
Country_Maldives 3.8868 0.708 5.489 0.000 2.498 5.276
Country_Mali -13.7600 0.614 -22.421 0.000 -14.964 -12.556
Country_Malta -12.2713 0.879 -13.955 0.000 -13.996 -10.547
Country_Marshall Islands 1.6728 2.048 0.817 0.414 -2.343 5.688
Country_Mauritania -7.1774 0.592 -12.131 0.000 -8.338 -6.017
Country_Mauritius 1.1115 0.537 2.071 0.038 0.059 2.164
Country_Mexico 4.5619 0.542 8.421 0.000 3.500 5.624
Country_Micronesia (Federated States of) -2.1359 0.589 -3.624 0.000 -3.292 -0.980
Country_Monaco -0.6930 1.920 -0.361 0.718 -4.459 3.073
Country_Mongolia -5.0890 0.535 -9.510 0.000 -6.138 -4.040
Country_Montenegro 3.3868 0.578 5.856 0.000 2.253 4.521
Country_Morocco 0.6693 0.528 1.268 0.205 -0.366 1.705
Country_Mozambique -12.4587 0.707 -17.622 0.000 -13.845 -11.072
Country_Myanmar -7.0211 0.641 -10.952 0.000 -8.278 -5.764
Country_Namibia -5.9434 0.622 -9.559 0.000 -7.163 -4.724
Country_Nauru 0.1517 1.936 0.078 0.938 -3.645 3.949
Country_Nepal -5.2503 0.650 -8.079 0.000 -6.525 -3.976
Country_Netherlands -12.2373 0.875 -13.984 0.000 -13.953 -10.521
Country_New Zealand -11.9634 0.856 -13.975 0.000 -13.642 -10.285
Country_Nicaragua 3.0351 0.577 5.265 0.000 1.905 4.166
Country_Niger -10.2640 0.734 -13.990 0.000 -11.703 -8.825
Country_Nigeria -9.6062 1.323 -7.262 0.000 -12.200 -7.012
Country_Niue -0.2211 1.927 -0.115 0.909 -3.999 3.557
Country_Norway -11.7505 0.878 -13.383 0.000 -13.472 -10.029
Country_Oman 3.1708 0.541 5.857 0.000 2.109 4.233
Country_Pakistan -8.7646 1.064 -8.236 0.000 -10.851 -6.678
Country_Palau -0.1512 1.928 -0.078 0.937 -3.932 3.629
Country_Panama 5.7315 0.527 10.877 0.000 4.698 6.765
Country_Papua New Guinea -8.1734 0.577 -14.162 0.000 -9.305 -7.042
Country_Paraguay 2.3642 0.539 4.387 0.000 1.307 3.421
Country_Peru 2.5897 0.538 4.809 0.000 1.534 3.646
Country_Philippines -3.6853 0.618 -5.965 0.000 -4.897 -2.474
Country_Poland -17.0092 0.889 -19.132 0.000 -18.753 -15.266
Country_Portugal -12.5562 0.908 -13.834 0.000 -14.336 -10.776
Country_Qatar 5.7333 0.633 9.062 0.000 4.493 6.974
Country_Republic of Korea 9.5900 0.650 14.751 0.000 8.315 10.865
Country_Republic of Moldova 0.0469 0.605 0.077 0.938 -1.140 1.234
Country_Romania -18.5794 0.950 -19.564 0.000 -20.442 -16.717
Country_Russian Federation -2.7774 0.559 -4.967 0.000 -3.874 -1.681
Country_Rwanda -9.7279 0.563 -17.272 0.000 -10.832 -8.623
Country_Saint Kitts and Nevis -0.3742 1.929 -0.194 0.846 -4.158 3.409
Country_Saint Lucia 3.0517 0.573 5.328 0.000 1.928 4.175
Country_Saint Vincent and the Grenadines 3.0522 0.577 5.289 0.000 1.921 4.184
Country_Samoa 3.2221 0.590 5.458 0.000 2.064 4.380
Country_San Marino 1.281e-15 3.25e-16 3.945 0.000 6.44e-16 1.92e-15
Country_Sao Tome and Principe -5.5226 0.570 -9.692 0.000 -6.640 -4.405
Country_Saudi Arabia 1.5367 0.542 2.836 0.005 0.474 2.599
Country_Senegal -7.5512 0.613 -12.318 0.000 -8.753 -6.349
Country_Serbia 3.0942 0.570 5.424 0.000 1.976 4.213
Country_Seychelles 1.1472 0.510 2.247 0.025 0.146 2.148
Country_Sierra Leone -23.4103 0.595 -39.341 0.000 -24.577 -22.243
Country_Singapore -11.7512 0.895 -13.130 0.000 -13.506 -9.996
Country_Slovakia -17.6592 0.932 -18.956 0.000 -19.486 -15.832
Country_Slovenia -12.7290 0.912 -13.962 0.000 -14.517 -10.941
Country_Solomon Islands -2.8756 0.628 -4.575 0.000 -4.108 -1.643
Country_Somalia -16.4311 0.613 -26.798 0.000 -17.634 -15.229
Country_South Africa -7.2253 0.676 -10.695 0.000 -8.550 -5.900
Country_South Sudan -13.5777 0.736 -18.449 0.000 -15.021 -12.134
Country_Spain -11.2193 0.861 -13.024 0.000 -12.909 -9.530
Country_Sri Lanka 1.2581 0.605 2.080 0.038 0.072 2.444
Country_Sudan -7.4963 0.620 -12.091 0.000 -8.712 -6.280
Country_Suriname -0.2626 0.601 -0.437 0.662 -1.442 0.917
Country_Swaziland -8.2209 0.820 -10.030 0.000 -9.828 -6.613
Country_Sweden -10.4318 0.852 -12.240 0.000 -12.103 -8.760
Country_Switzerland -10.8080 0.938 -11.521 0.000 -12.648 -8.968
Country_Syrian Arab Republic -0.0209 0.563 -0.037 0.970 -1.125 1.083
Country_Tajikistan -4.5686 0.537 -8.503 0.000 -5.622 -3.515
Country_Thailand 1.7351 0.639 2.716 0.007 0.482 2.988
Country_The former Yugoslav republic of Macedonia 2.9756 0.615 4.836 0.000 1.769 4.182
Country_Timor-Leste -7.1945 0.647 -11.123 0.000 -8.463 -5.926
Country_Togo -12.9612 0.604 -21.457 0.000 -14.146 -11.777
Country_Tonga 1.0971 0.596 1.841 0.066 -0.072 2.266
Country_Trinidad and Tobago 0.2871 0.559 0.514 0.607 -0.808 1.383
Country_Tunisia 2.5458 0.555 4.585 0.000 1.457 3.635
Country_Turkey 2.5928 0.530 4.892 0.000 1.553 3.632
Country_Turkmenistan -6.1294 0.621 -9.877 0.000 -7.346 -4.912
Country_Tuvalu -2.723e-07 3.19e-08 -8.533 0.000 -3.35e-07 -2.1e-07
Country_Uganda -11.1372 0.692 -16.091 0.000 -12.495 -9.780
Country_Ukraine -0.7919 0.523 -1.514 0.130 -1.818 0.234
Country_United Arab Emirates 4.1369 0.562 7.365 0.000 3.035 5.238
Country_United Kingdom of Great Britain and Northern Ireland -11.2227 0.950 -11.813 0.000 -13.086 -9.360
Country_United Republic of Tanzania -12.0977 0.589 -20.550 0.000 -13.252 -10.943
Country_United States of America -14.2563 0.974 -14.634 0.000 -16.167 -12.346
Country_Uruguay 5.1690 0.553 9.350 0.000 4.085 6.253
Country_Uzbekistan -3.2687 0.553 -5.914 0.000 -4.353 -2.185
Country_Vanuatu 0.6602 0.568 1.162 0.245 -0.454 1.774
Country_Venezuela (Bolivarian Republic of) 2.8068 0.589 4.764 0.000 1.651 3.962
Country_Viet Nam 2.7917 0.609 4.583 0.000 1.597 3.986
Country_Yemen -7.2082 0.655 -11.003 0.000 -8.493 -5.924
Country_Zambia -12.2124 0.573 -21.315 0.000 -13.336 -11.089
Country_Zimbabwe -12.9092 0.694 -18.610 0.000 -14.270 -11.549
Status_Developed -436.0261 22.964 -18.987 0.000 -481.060 -390.992
Status_Developing -457.7453 23.650 -19.355 0.000 -504.125 -411.365
==============================================================================
Omnibus: 570.909 Durbin-Watson: 1.911
Prob(Omnibus): 0.000 Jarque-Bera (JB): 16400.405
Skew: 0.503 Prob(JB): 0.00
Kurtosis: 15.903 Cond. No. 8.21e+24
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 8.56e-32. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
# Extract the summary table as a DataFrame
summary_table = model.summary2().tables[1] # tables[1] is the coefficients table in summary2()
# Sort by p-values (for example)
sorted_summary = summary_table.sort_values(by='t')
# Set display options to prevent truncation
pd.options.display.max_rows = None # Shows all rows
pd.options.display.max_columns = None # Shows all columns
sorted_summary
| Coef. | Std.Err. | t | P>|t| | [0.025 | 0.975] | |
|---|---|---|---|---|---|---|
| Country_Sierra Leone | -2.384615e+01 | 7.024424e-01 | -33.947488 | 1.836603e-202 | -2.522370e+01 | -2.246861e+01 |
| Country_Lesotho | -2.098876e+01 | 6.818324e-01 | -30.782881 | 1.390266e-172 | -2.232589e+01 | -1.965164e+01 |
| Country_Swaziland | -1.954167e+01 | 6.639749e-01 | -29.431346 | 3.709886e-160 | -2.084378e+01 | -1.823957e+01 |
| Country_Malawi | -1.955037e+01 | 6.836621e-01 | -28.596539 | 1.340917e-152 | -2.089108e+01 | -1.820966e+01 |
| Country_Zimbabwe | -1.953323e+01 | 7.054177e-01 | -27.690310 | 1.665289e-144 | -2.091661e+01 | -1.814986e+01 |
| Country_Central African Republic | -2.110985e+01 | 7.715096e-01 | -27.361745 | 1.336742e-141 | -2.262284e+01 | -1.959686e+01 |
| Country_Côte d'Ivoire | -1.929140e+01 | 7.193652e-01 | -26.817258 | 7.989231e-137 | -2.070213e+01 | -1.788067e+01 |
| Country_Angola | -1.965137e+01 | 7.382675e-01 | -26.618226 | 4.332100e-135 | -2.109917e+01 | -1.820357e+01 |
| Country_Zambia | -1.577182e+01 | 6.545813e-01 | -24.094511 | 1.076908e-113 | -1.705550e+01 | -1.448814e+01 |
| Country_Lithuania | -2.320593e+01 | 9.969035e-01 | -23.278007 | 4.992191e-107 | -2.516093e+01 | -2.125093e+01 |
| Country_Latvia | -2.308448e+01 | 9.966439e-01 | -23.162217 | 4.292374e-106 | -2.503897e+01 | -2.112999e+01 |
| Country_Chad | -1.885356e+01 | 8.140584e-01 | -23.159955 | 4.476320e-106 | -2.044998e+01 | -1.725713e+01 |
| Country_Hungary | -2.195012e+01 | 9.568583e-01 | -22.939778 | 2.629772e-104 | -2.382659e+01 | -2.007365e+01 |
| Country_Somalia | -1.595300e+01 | 6.996920e-01 | -22.800030 | 3.447001e-103 | -1.732515e+01 | -1.458085e+01 |
| Country_Bulgaria | -2.292869e+01 | 1.009367e+00 | -22.715916 | 1.614692e-102 | -2.490813e+01 | -2.094925e+01 |
| Country_Botswana | -1.399261e+01 | 6.287431e-01 | -22.254894 | 7.191876e-99 | -1.522562e+01 | -1.275960e+01 |
| Country_Cameroon | -1.554462e+01 | 7.000790e-01 | -22.204089 | 1.803475e-98 | -1.691752e+01 | -1.417171e+01 |
| Status_Developing | -5.726251e+02 | 2.611777e+01 | -21.924733 | 2.762853e-96 | -6.238439e+02 | -5.214062e+02 |
| Country_Mozambique | -1.698469e+01 | 7.816731e-01 | -21.728638 | 9.223281e-95 | -1.851761e+01 | -1.545177e+01 |
| Status_Developed | -5.474589e+02 | 2.533915e+01 | -21.605259 | 8.298853e-94 | -5.971509e+02 | -4.977670e+02 |
| Country_Romania | -2.201775e+01 | 1.039419e+00 | -21.182735 | 1.445750e-90 | -2.405612e+01 | -1.997937e+01 |
| Country_Poland | -2.043647e+01 | 9.699842e-01 | -21.068873 | 1.062702e-89 | -2.233868e+01 | -1.853426e+01 |
| Country_Slovakia | -2.053319e+01 | 9.943115e-01 | -20.650659 | 1.520857e-86 | -2.248310e+01 | -1.858327e+01 |
| Country_Guinea-Bissau | -1.553999e+01 | 7.674100e-01 | -20.249917 | 1.467067e-83 | -1.704494e+01 | -1.403504e+01 |
| Country_Mali | -1.456148e+01 | 7.210360e-01 | -20.195226 | 3.721311e-83 | -1.597549e+01 | -1.314748e+01 |
| Country_Togo | -1.408157e+01 | 7.092691e-01 | -19.853632 | 1.198843e-80 | -1.547250e+01 | -1.269064e+01 |
| Country_United Republic of Tanzania | -1.350178e+01 | 6.803865e-01 | -19.844282 | 1.402816e-80 | -1.483607e+01 | -1.216749e+01 |
| Country_Croatia | -1.973008e+01 | 1.031898e+00 | -19.120184 | 2.312525e-75 | -2.175371e+01 | -1.770645e+01 |
| Country_Equatorial Guinea | -1.418284e+01 | 7.418940e-01 | -19.117065 | 2.433683e-75 | -1.563774e+01 | -1.272793e+01 |
| Country_Burundi | -1.430045e+01 | 7.505235e-01 | -19.053966 | 6.829927e-75 | -1.577228e+01 | -1.282862e+01 |
| Country_Benin | -1.286127e+01 | 6.992442e-01 | -18.393099 | 2.915920e-70 | -1.423254e+01 | -1.149000e+01 |
| Country_Denmark | -1.719045e+01 | 9.420532e-01 | -18.247856 | 2.928719e-69 | -1.903789e+01 | -1.534302e+01 |
| Country_Guinea | -1.396273e+01 | 7.769852e-01 | -17.970394 | 2.315181e-67 | -1.548646e+01 | -1.243901e+01 |
| Country_Democratic Republic of the Congo | -1.404247e+01 | 7.991430e-01 | -17.571908 | 1.129680e-64 | -1.560964e+01 | -1.247529e+01 |
| Country_Ireland | -1.641810e+01 | 9.391121e-01 | -17.482573 | 4.462015e-64 | -1.825976e+01 | -1.457643e+01 |
| Country_South Sudan | -1.473396e+01 | 8.460699e-01 | -17.414593 | 1.264681e-63 | -1.639317e+01 | -1.307476e+01 |
| Country_Czechia | -1.830798e+01 | 1.054105e+00 | -17.368271 | 2.567612e-63 | -2.037516e+01 | -1.624081e+01 |
| Country_Afghanistan | -1.244918e+01 | 7.229727e-01 | -17.219437 | 2.474866e-62 | -1.386699e+01 | -1.103138e+01 |
| Country_United States of America | -1.765947e+01 | 1.035835e+00 | -17.048538 | 3.278035e-61 | -1.969081e+01 | -1.562812e+01 |
| Country_South Africa | -1.228523e+01 | 7.221881e-01 | -17.011122 | 5.756352e-61 | -1.370149e+01 | -1.086897e+01 |
| Country_Liberia | -1.251050e+01 | 7.471688e-01 | -16.743867 | 3.125821e-59 | -1.397575e+01 | -1.104524e+01 |
| Country_Uganda | -1.321571e+01 | 7.893853e-01 | -16.741772 | 3.224623e-59 | -1.476375e+01 | -1.166767e+01 |
| Country_Malta | -1.612846e+01 | 9.656338e-01 | -16.702460 | 5.779390e-59 | -1.802214e+01 | -1.423478e+01 |
| Country_Rwanda | -1.107606e+01 | 6.649750e-01 | -16.656350 | 1.144249e-58 | -1.238012e+01 | -9.771991e+00 |
| Country_Australia | -1.512439e+01 | 9.093915e-01 | -16.631334 | 1.656495e-58 | -1.690778e+01 | -1.334101e+01 |
| Country_New Zealand | -1.549884e+01 | 9.374598e-01 | -16.532805 | 7.083176e-58 | -1.733727e+01 | -1.366041e+01 |
| Country_Netherlands | -1.579157e+01 | 9.629190e-01 | -16.399687 | 4.991373e-57 | -1.767993e+01 | -1.390322e+01 |
| Country_Portugal | -1.623373e+01 | 9.933403e-01 | -16.342570 | 1.149358e-56 | -1.818175e+01 | -1.428572e+01 |
| Country_Slovenia | -1.627526e+01 | 9.980914e-01 | -16.306385 | 1.947279e-56 | -1.823259e+01 | -1.431793e+01 |
| Country_Congo | -1.101422e+01 | 6.797341e-01 | -16.203725 | 8.648265e-56 | -1.234723e+01 | -9.681216e+00 |
| Country_Belgium | -1.571360e+01 | 9.743988e-01 | -16.126459 | 2.643485e-55 | -1.762447e+01 | -1.380273e+01 |
| Country_Cyprus | -1.636576e+01 | 1.018493e+00 | -16.068600 | 6.086419e-55 | -1.836310e+01 | -1.436842e+01 |
| Country_Singapore | -1.586329e+01 | 9.929674e-01 | -15.975641 | 2.312848e-54 | -1.781057e+01 | -1.391601e+01 |
| Country_Iceland | -1.451723e+01 | 9.108647e-01 | -15.937861 | 3.972229e-54 | -1.630351e+01 | -1.273096e+01 |
| Country_Norway | -1.527585e+01 | 9.614697e-01 | -15.888021 | 8.095287e-54 | -1.716136e+01 | -1.339034e+01 |
| Country_Spain | -1.485810e+01 | 9.458400e-01 | -15.708889 | 1.031069e-52 | -1.671296e+01 | -1.300323e+01 |
| Country_Gambia | -1.047816e+01 | 6.684227e-01 | -15.675954 | 1.642058e-52 | -1.178899e+01 | -9.167338e+00 |
| Country_Burkina Faso | -1.335458e+01 | 8.560108e-01 | -15.600951 | 4.724924e-52 | -1.503328e+01 | -1.167588e+01 |
| Country_Kenya | -1.234284e+01 | 7.986110e-01 | -15.455380 | 3.633338e-51 | -1.390897e+01 | -1.077670e+01 |
| Country_Germany | -1.508492e+01 | 9.778896e-01 | -15.425994 | 5.474593e-51 | -1.700263e+01 | -1.316721e+01 |
| Country_Luxembourg | -1.555601e+01 | 1.024337e+00 | -15.186417 | 1.512976e-49 | -1.756481e+01 | -1.354721e+01 |
| Country_Sweden | -1.407837e+01 | 9.374418e-01 | -15.017857 | 1.524893e-48 | -1.591676e+01 | -1.223997e+01 |
| Country_Austria | -1.487461e+01 | 1.015020e+00 | -14.654506 | 2.068167e-46 | -1.686514e+01 | -1.288408e+01 |
| Country_Haiti | -1.047507e+01 | 7.208575e-01 | -14.531400 | 1.067751e-45 | -1.188872e+01 | -9.061415e+00 |
| Country_Japan | -1.438887e+01 | 1.002513e+00 | -14.352799 | 1.132490e-44 | -1.635488e+01 | -1.242287e+01 |
| Country_United Kingdom of Great Britain and Northern Ireland | -1.434710e+01 | 1.012838e+00 | -14.165244 | 1.317882e-43 | -1.633335e+01 | -1.236085e+01 |
| Country_Italy | -1.390844e+01 | 9.876524e-01 | -14.082323 | 3.867585e-43 | -1.584530e+01 | -1.197158e+01 |
| Country_Switzerland | -1.411181e+01 | 1.008644e+00 | -13.990877 | 1.260273e-42 | -1.608984e+01 | -1.213379e+01 |
| Country_Ghana | -9.714084e+00 | 7.231396e-01 | -13.433206 | 1.476320e-39 | -1.113221e+01 | -8.295954e+00 |
| Country_Namibia | -9.399137e+00 | 7.010576e-01 | -13.407083 | 2.043533e-39 | -1.077396e+01 | -8.024312e+00 |
| Country_Papua New Guinea | -9.037959e+00 | 6.769572e-01 | -13.350859 | 4.106926e-39 | -1.036552e+01 | -7.710397e+00 |
| Country_Comoros | -9.220819e+00 | 6.917821e-01 | -13.329079 | 5.378435e-39 | -1.057745e+01 | -7.864183e+00 |
| Country_Djibouti | -1.000317e+01 | 7.846496e-01 | -12.748578 | 6.216133e-36 | -1.154192e+01 | -8.464412e+00 |
| Country_Niger | -1.058867e+01 | 8.399098e-01 | -12.606909 | 3.338073e-35 | -1.223579e+01 | -8.941542e+00 |
| Country_Eritrea | -9.592419e+00 | 7.668567e-01 | -12.508751 | 1.059761e-34 | -1.109628e+01 | -8.088557e+00 |
| Country_Gabon | -7.835945e+00 | 6.636000e-01 | -11.808235 | 3.221754e-31 | -9.137313e+00 | -6.534577e+00 |
| Country_Sudan | -8.065745e+00 | 6.838239e-01 | -11.795060 | 3.731982e-31 | -9.406774e+00 | -6.724716e+00 |
| Country_Lao People's Democratic Republic | -8.208108e+00 | 7.050813e-01 | -11.641364 | 2.052262e-30 | -9.590824e+00 | -6.825392e+00 |
| Country_Senegal | -7.928504e+00 | 7.017575e-01 | -11.298068 | 8.615295e-29 | -9.304702e+00 | -6.552306e+00 |
| Country_Mauritania | -7.841409e+00 | 6.956110e-01 | -11.272693 | 1.131258e-28 | -9.205553e+00 | -6.477265e+00 |
| Country_Ethiopia | -8.897927e+00 | 7.916450e-01 | -11.239795 | 1.609065e-28 | -1.045040e+01 | -7.345454e+00 |
| Country_Madagascar | -7.629826e+00 | 6.989008e-01 | -10.916894 | 4.871133e-27 | -9.000421e+00 | -6.259230e+00 |
| Country_Kiribati | -6.561295e+00 | 6.186039e-01 | -10.606618 | 1.188487e-25 | -7.774423e+00 | -5.348168e+00 |
| Country_Timor-Leste | -7.116939e+00 | 7.140851e-01 | -9.966514 | 6.683709e-23 | -8.517312e+00 | -5.716566e+00 |
| Country_Turkmenistan | -6.679133e+00 | 6.839479e-01 | -9.765559 | 4.538208e-22 | -8.020405e+00 | -5.337861e+00 |
| Country_Myanmar | -6.931763e+00 | 7.198311e-01 | -9.629707 | 1.624277e-21 | -8.343404e+00 | -5.520121e+00 |
| Country_Cambodia | -6.552976e+00 | 6.999577e-01 | -9.361961 | 1.912867e-20 | -7.925644e+00 | -5.180308e+00 |
| Country_Yemen | -6.617634e+00 | 7.158515e-01 | -9.244424 | 5.536898e-20 | -8.021472e+00 | -5.213797e+00 |
| Country_Sao Tome and Principe | -5.921592e+00 | 6.502695e-01 | -9.106366 | 1.899853e-19 | -7.196818e+00 | -4.646366e+00 |
| Country_Mongolia | -5.410840e+00 | 5.955876e-01 | -9.084877 | 2.298316e-19 | -6.578830e+00 | -4.242849e+00 |
| Country_Tajikistan | -4.906333e+00 | 5.979946e-01 | -8.204643 | 3.944642e-16 | -6.079044e+00 | -3.733621e+00 |
| Country_Pakistan | -9.270009e+00 | 1.153261e+00 | -8.038083 | 1.493826e-15 | -1.153164e+01 | -7.008379e+00 |
| under-five deaths | -6.571412e-02 | 9.046744e-03 | -7.263842 | 5.244266e-13 | -8.345544e-02 | -4.797279e-02 |
| Country_Kazakhstan | -4.162719e+00 | 5.900547e-01 | -7.054803 | 2.324707e-12 | -5.319860e+00 | -3.005579e+00 |
| Country_Nigeria | -1.012007e+01 | 1.442564e+00 | -7.015336 | 3.065596e-12 | -1.294905e+01 | -7.291098e+00 |
| Country_Nepal | -4.951988e+00 | 7.063913e-01 | -7.010262 | 3.176268e-12 | -6.337273e+00 | -3.566703e+00 |
| Country_Guyana | -4.588058e+00 | 6.678301e-01 | -6.870097 | 8.381709e-12 | -5.897722e+00 | -3.278394e+00 |
| Country_Bhutan | -5.300396e+00 | 7.860718e-01 | -6.742890 | 1.990756e-11 | -6.841940e+00 | -3.758852e+00 |
| Adult Mortality | -3.694340e-03 | 5.511215e-04 | -6.703312 | 2.597701e-11 | -4.775129e-03 | -2.613550e-03 |
| Country_San Marino | -8.029090e-10 | 1.233071e-10 | -6.511455 | 9.246181e-11 | -1.044723e-09 | -5.610946e-10 |
| Country_Indonesia | -4.874471e+00 | 7.762641e-01 | -6.279397 | 4.103791e-10 | -6.396782e+00 | -3.352160e+00 |
| Country_Uzbekistan | -3.677017e+00 | 5.998464e-01 | -6.129931 | 1.043807e-09 | -4.853360e+00 | -2.500675e+00 |
| Country_Philippines | -3.769967e+00 | 6.801129e-01 | -5.543149 | 3.337141e-08 | -5.103719e+00 | -2.436216e+00 |
| Country_Solomon Islands | -3.663782e+00 | 6.927873e-01 | -5.288465 | 1.359100e-07 | -5.022388e+00 | -2.305175e+00 |
| Country_Fiji | -3.180234e+00 | 6.378811e-01 | -4.985623 | 6.672689e-07 | -4.431166e+00 | -1.929303e+00 |
| Country_Bolivia (Plurinational State of) | -2.847983e+00 | 6.299739e-01 | -4.520796 | 6.497113e-06 | -4.083408e+00 | -1.612558e+00 |
| Country_Russian Federation | -2.629292e+00 | 6.056501e-01 | -4.341273 | 1.482625e-05 | -3.817017e+00 | -1.441568e+00 |
| Alcohol | -1.109159e-01 | 2.870888e-02 | -3.863472 | 1.151116e-04 | -1.672161e-01 | -5.461572e-02 |
| Country_Bangladesh | -2.898584e+00 | 7.765957e-01 | -3.732423 | 1.945924e-04 | -4.421545e+00 | -1.375623e+00 |
| Country_Micronesia (Federated States of) | -2.258458e+00 | 6.503075e-01 | -3.472908 | 5.250809e-04 | -3.533758e+00 | -9.831573e-01 |
| Country_Democratic People's Republic of Korea | -1.975778e+00 | 5.928284e-01 | -3.332799 | 8.744110e-04 | -3.138358e+00 | -8.131981e-01 |
| Country_India | -9.164212e+00 | 2.856694e+00 | -3.207978 | 1.356466e-03 | -1.476640e+01 | -3.562027e+00 |
| Hepatitis B | -6.809741e-03 | 2.408427e-03 | -2.827463 | 4.735471e-03 | -1.153284e-02 | -2.086638e-03 |
| Country_Kyrgyzstan | -1.676051e+00 | 6.283511e-01 | -2.667380 | 7.702130e-03 | -2.908294e+00 | -4.438089e-01 |
| Country_Belize | -1.599300e+00 | 6.333224e-01 | -2.525254 | 1.163315e-02 | -2.841291e+00 | -3.573084e-01 |
| logGDP | -9.947509e-02 | 4.910909e-02 | -2.025594 | 4.293027e-02 | -1.957816e-01 | -3.168566e-03 |
| Country_Azerbaijan | -1.036844e+00 | 5.955634e-01 | -1.740947 | 8.183652e-02 | -2.204788e+00 | 1.310989e-01 |
| BMI | -6.160831e-03 | 3.631022e-03 | -1.696721 | 8.989482e-02 | -1.328153e-02 | 9.598678e-04 |
| Measles | -8.519964e-06 | 5.207132e-06 | -1.636211 | 1.019426e-01 | -1.873153e-05 | 1.691602e-06 |
| Country_Ukraine | -9.041591e-01 | 5.849994e-01 | -1.545573 | 1.223556e-01 | -2.051386e+00 | 2.430675e-01 |
| Population | -1.685098e-09 | 1.102843e-09 | -1.527959 | 1.266706e-01 | -3.847853e-09 | 4.776570e-10 |
| Country_Iraq | -9.245128e-01 | 6.235236e-01 | -1.482723 | 1.382952e-01 | -2.147288e+00 | 2.982625e-01 |
| Total expenditure | -3.698317e-02 | 2.695711e-02 | -1.371926 | 1.702302e-01 | -8.984804e-02 | 1.588170e-02 |
| Country_Suriname | -6.893467e-01 | 6.736866e-01 | -1.023245 | 3.063075e-01 | -2.010495e+00 | 6.318020e-01 |
| Income composition of resources | -5.059445e-01 | 5.503265e-01 | -0.919353 | 3.580145e-01 | -1.585175e+00 | 5.732861e-01 |
| Country_Dominica | -1.191247e+00 | 2.069758e+00 | -0.575549 | 5.649806e-01 | -5.250195e+00 | 2.867700e+00 |
| Country_Palau | -1.025232e+00 | 2.079517e+00 | -0.493014 | 6.220531e-01 | -5.103317e+00 | 3.052854e+00 |
| Country_Nauru | -9.229065e-01 | 2.091462e+00 | -0.441273 | 6.590597e-01 | -5.024417e+00 | 3.178604e+00 |
| Country_Monaco | -8.815249e-01 | 2.068923e+00 | -0.426079 | 6.700931e-01 | -4.938835e+00 | 3.175785e+00 |
| thinness 5-9 years | -1.334143e-02 | 3.386089e-02 | -0.394007 | 6.936150e-01 | -7.974512e-02 | 5.306225e-02 |
| Country_China | -4.095934e-01 | 1.086974e+00 | -0.376820 | 7.063449e-01 | -2.541229e+00 | 1.722042e+00 |
| Country_Cook Islands | -7.000490e-01 | 2.077959e+00 | -0.336893 | 7.362309e-01 | -4.775079e+00 | 3.374981e+00 |
| Country_Niue | -6.049927e-01 | 2.075671e+00 | -0.291468 | 7.707213e-01 | -4.675535e+00 | 3.465550e+00 |
| Country_Belarus | -1.801282e-01 | 6.971873e-01 | -0.258364 | 7.961508e-01 | -1.547364e+00 | 1.187107e+00 |
| Country_Vanuatu | -1.509672e-01 | 6.306616e-01 | -0.239379 | 8.108346e-01 | -1.387741e+00 | 1.085806e+00 |
| Country_Saint Kitts and Nevis | -1.618836e-01 | 2.080496e+00 | -0.077810 | 9.379864e-01 | -4.241888e+00 | 3.918120e+00 |
| Country_Egypt | -3.241900e-02 | 6.679046e-01 | -0.048538 | 9.612917e-01 | -1.342229e+00 | 1.277391e+00 |
| Country_Marshall Islands | -1.036425e-01 | 2.206165e+00 | -0.046979 | 9.625347e-01 | -4.430092e+00 | 4.222807e+00 |
| Country_Syrian Arab Republic | -1.121379e-02 | 6.185179e-01 | -0.018130 | 9.855368e-01 | -1.224173e+00 | 1.201745e+00 |
| thinness 1-19 years | 1.168155e-03 | 3.406010e-02 | 0.034297 | 9.726436e-01 | -6.562620e-02 | 6.796251e-02 |
| Country_El Salvador | 1.220767e-01 | 5.932056e-01 | 0.205792 | 8.369733e-01 | -1.041243e+00 | 1.285396e+00 |
| Country_Trinidad and Tobago | 1.778183e-01 | 6.293880e-01 | 0.282526 | 7.775677e-01 | -1.056458e+00 | 1.412094e+00 |
| Country_Morocco | 1.873879e-01 | 5.878484e-01 | 0.318769 | 7.499328e-01 | -9.654258e-01 | 1.340202e+00 |
| iHIV | 1.403563e-02 | 4.142533e-02 | 0.338818 | 7.347804e-01 | -6.720248e-02 | 9.527374e-02 |
| Country_Tonga | 3.967493e-01 | 6.619078e-01 | 0.599403 | 5.489678e-01 | -9.013002e-01 | 1.694799e+00 |
| Country_Republic of Moldova | 5.120735e-01 | 6.709034e-01 | 0.763260 | 4.453926e-01 | -8.036171e-01 | 1.827764e+00 |
| Country_Tuvalu | 2.592587e-08 | 2.248507e-08 | 1.153026 | 2.490285e-01 | -1.816900e-08 | 7.002074e-08 |
| Polio | 3.261042e-03 | 2.812878e-03 | 1.159326 | 2.464527e-01 | -2.255217e-03 | 8.777300e-03 |
| Country_Libya | 7.361366e-01 | 6.248871e-01 | 1.178031 | 2.389151e-01 | -4.893126e-01 | 1.961586e+00 |
| Country_Guatemala | 8.907405e-01 | 6.624187e-01 | 1.344679 | 1.788714e-01 | -4.083110e-01 | 2.189792e+00 |
| Country_Jordan | 1.117858e+00 | 6.942210e-01 | 1.610234 | 1.074942e-01 | -2.435598e-01 | 2.479277e+00 |
| Country_Brazil | 1.180940e+00 | 6.934523e-01 | 1.702986 | 8.871587e-02 | -1.789710e-01 | 2.540850e+00 |
| Country_Dominican Republic | 1.092110e+00 | 6.223024e-01 | 1.754951 | 7.941070e-02 | -1.282700e-01 | 2.312491e+00 |
| Country_Mauritius | 1.066178e+00 | 5.946133e-01 | 1.793061 | 7.310438e-02 | -9.990239e-02 | 2.232258e+00 |
| Country_Cabo Verde | 1.228555e+00 | 6.510965e-01 | 1.886902 | 5.930878e-02 | -4.829266e-02 | 2.505403e+00 |
| Country_Saudi Arabia | 1.203026e+00 | 6.073268e-01 | 1.980855 | 4.773536e-02 | 1.201412e-02 | 2.394039e+00 |
| Country_Seychelles | 1.139089e+00 | 5.688207e-01 | 2.002546 | 4.535204e-02 | 2.359039e-02 | 2.254588e+00 |
| Country_Grenada | 1.570422e+00 | 7.178004e-01 | 2.187826 | 2.879010e-02 | 1.627633e-01 | 2.978082e+00 |
| Schooling | 1.092271e-01 | 4.929293e-02 | 2.215878 | 2.680471e-02 | 1.256008e-02 | 2.058942e-01 |
| Country_Algeria | 1.466607e+00 | 6.378335e-01 | 2.299358 | 2.158052e-02 | 2.157692e-01 | 2.717445e+00 |
| Country_Sri Lanka | 1.709911e+00 | 6.701607e-01 | 2.551494 | 1.079522e-02 | 3.956767e-01 | 3.024145e+00 |
| Country_Thailand | 1.779859e+00 | 6.928353e-01 | 2.568949 | 1.026797e-02 | 4.211579e-01 | 3.138559e+00 |
| Country_Kuwait | 1.610600e+00 | 6.152717e-01 | 2.617705 | 8.914716e-03 | 4.040069e-01 | 2.817192e+00 |
| Country_Honduras | 1.704227e+00 | 6.237124e-01 | 2.732392 | 6.339303e-03 | 4.810812e-01 | 2.927372e+00 |
| Diphtheria | 8.486582e-03 | 2.948735e-03 | 2.878041 | 4.041215e-03 | 2.703897e-03 | 1.426927e-02 |
| Country_Armenia | 1.918190e+00 | 6.644430e-01 | 2.886913 | 3.929434e-03 | 6.151682e-01 | 3.221211e+00 |
| Country_Malaysia | 1.923192e+00 | 6.061451e-01 | 3.172825 | 1.531052e-03 | 7.344972e-01 | 3.111887e+00 |
| Country_Colombia | 1.869283e+00 | 5.786304e-01 | 3.230530 | 1.254349e-03 | 7.345461e-01 | 3.004019e+00 |
| Country_Paraguay | 1.977906e+00 | 5.850927e-01 | 3.380499 | 7.365351e-04 | 8.304960e-01 | 3.125315e+00 |
| Country_Iran (Islamic Republic of) | 2.532728e+00 | 7.280429e-01 | 3.478818 | 5.137009e-04 | 1.104983e+00 | 3.960474e+00 |
| Country_Peru | 2.081224e+00 | 5.878562e-01 | 3.540363 | 4.081111e-04 | 9.283952e-01 | 3.234053e+00 |
| Country_Tunisia | 2.200142e+00 | 6.191602e-01 | 3.553429 | 3.884787e-04 | 9.859233e-01 | 3.414360e+00 |
| Country_Turkey | 2.225846e+00 | 5.908441e-01 | 3.767230 | 1.695281e-04 | 1.067157e+00 | 3.384534e+00 |
| Country_Lebanon | 2.314988e+00 | 6.099977e-01 | 3.795077 | 1.516985e-04 | 1.118738e+00 | 3.511238e+00 |
| Country_Georgia | 2.325753e+00 | 5.933143e-01 | 3.919934 | 9.135753e-05 | 1.162220e+00 | 3.489286e+00 |
| Country_Samoa | 2.665064e+00 | 6.541280e-01 | 4.074224 | 4.785119e-05 | 1.382271e+00 | 3.947857e+00 |
| logExpend | 1.368168e-01 | 3.310361e-02 | 4.132987 | 3.718740e-05 | 7.189819e-02 | 2.017354e-01 |
| Country_Montenegro | 2.661788e+00 | 6.418017e-01 | 4.147368 | 3.494506e-05 | 1.403168e+00 | 3.920408e+00 |
| Country_Nicaragua | 2.620535e+00 | 6.315138e-01 | 4.149608 | 3.460759e-05 | 1.382090e+00 | 3.858980e+00 |
| Country_The former Yugoslav republic of Macedonia | 3.018132e+00 | 6.802430e-01 | 4.436844 | 9.591920e-06 | 1.684126e+00 | 4.352138e+00 |
| Country_Serbia | 2.889230e+00 | 6.315070e-01 | 4.575135 | 5.031413e-06 | 1.650798e+00 | 4.127661e+00 |
| Country_Oman | 2.847179e+00 | 6.038693e-01 | 4.714892 | 2.574149e-06 | 1.662947e+00 | 4.031410e+00 |
| Country_Venezuela (Bolivarian Republic of) | 3.193301e+00 | 6.566846e-01 | 4.862763 | 1.241834e-06 | 1.905495e+00 | 4.481108e+00 |
| Country_Barbados | 3.298628e+00 | 6.569644e-01 | 5.021016 | 5.564854e-07 | 2.010273e+00 | 4.586984e+00 |
| Country_Maldives | 3.954402e+00 | 7.761869e-01 | 5.094651 | 3.800035e-07 | 2.432243e+00 | 5.476561e+00 |
| Country_Jamaica | 3.090735e+00 | 6.025343e-01 | 5.129558 | 3.165830e-07 | 1.909121e+00 | 4.272349e+00 |
| Country_Argentina | 3.522508e+00 | 6.554501e-01 | 5.374181 | 8.529424e-08 | 2.237122e+00 | 4.807893e+00 |
| Country_Viet Nam | 3.633903e+00 | 6.619204e-01 | 5.489940 | 4.497364e-08 | 2.335829e+00 | 4.931978e+00 |
| Country_Estonia | 3.866735e+00 | 7.027873e-01 | 5.501999 | 4.204258e-08 | 2.488518e+00 | 5.244952e+00 |
| Country_Saint Vincent and the Grenadines | 3.546004e+00 | 6.322555e-01 | 5.608499 | 2.304945e-08 | 2.306105e+00 | 4.785904e+00 |
| Country_Albania | 3.527683e+00 | 6.070984e-01 | 5.810726 | 7.151623e-09 | 2.337118e+00 | 4.718247e+00 |
| Country_Saint Lucia | 3.699044e+00 | 6.330338e-01 | 5.843359 | 5.899884e-09 | 2.457618e+00 | 4.940470e+00 |
| Country_Ecuador | 3.275261e+00 | 5.603980e-01 | 5.844526 | 5.859342e-09 | 2.176279e+00 | 4.374242e+00 |
| Country_Bahrain | 3.896774e+00 | 6.644473e-01 | 5.864684 | 5.200030e-09 | 2.593744e+00 | 5.199804e+00 |
| Country_United Arab Emirates | 3.702151e+00 | 6.243671e-01 | 5.929446 | 3.534649e-09 | 2.477722e+00 | 4.926581e+00 |
| Country_Bahamas | 4.168751e+00 | 6.880588e-01 | 6.058714 | 1.616754e-09 | 2.819418e+00 | 5.518085e+00 |
| Country_Antigua and Barbuda | 4.402229e+00 | 6.664384e-01 | 6.605606 | 4.979918e-11 | 3.095295e+00 | 5.709164e+00 |
| Country_Mexico | 4.116571e+00 | 6.010069e-01 | 6.849457 | 9.654499e-12 | 2.937952e+00 | 5.295189e+00 |
| Country_Bosnia and Herzegovina | 4.633266e+00 | 6.700182e-01 | 6.915134 | 6.148647e-12 | 3.319311e+00 | 5.947221e+00 |
| infant deaths | 9.060206e-02 | 1.306114e-02 | 6.936766 | 5.294981e-12 | 6.498821e-02 | 1.162159e-01 |
| Country_Brunei Darussalam | 4.179517e+00 | 5.983163e-01 | 6.985463 | 3.776118e-12 | 3.006175e+00 | 5.352859e+00 |
| Country_Qatar | 5.105357e+00 | 6.542522e-01 | 7.803348 | 9.351701e-15 | 3.822321e+00 | 6.388394e+00 |
| Country_Uruguay | 4.940473e+00 | 6.139174e-01 | 8.047456 | 1.386888e-15 | 3.736537e+00 | 6.144410e+00 |
| Country_Panama | 5.375253e+00 | 5.747970e-01 | 9.351567 | 2.102387e-20 | 4.248034e+00 | 6.502472e+00 |
| Country_Cuba | 6.024380e+00 | 5.841622e-01 | 10.312854 | 2.269453e-24 | 4.878795e+00 | 7.169964e+00 |
| Country_Chile | 7.631849e+00 | 6.605734e-01 | 11.553371 | 5.398430e-30 | 6.336417e+00 | 8.927282e+00 |
| Country_Costa Rica | 6.982737e+00 | 5.697886e-01 | 12.254960 | 2.027169e-33 | 5.865339e+00 | 8.100134e+00 |
| Country_Republic of Korea | 9.750169e+00 | 7.194085e-01 | 13.553035 | 3.300087e-40 | 8.339356e+00 | 1.116098e+01 |
| Country_Greece | 1.026885e+01 | 7.291159e-01 | 14.083974 | 3.785762e-43 | 8.839000e+00 | 1.169870e+01 |
| Country_Canada | 1.002031e+01 | 7.083147e-01 | 14.146690 | 1.677612e-43 | 8.631251e+00 | 1.140937e+01 |
| Country_Finland | 9.252164e+00 | 6.449588e-01 | 14.345356 | 1.248971e-44 | 7.987352e+00 | 1.051698e+01 |
| Country_France | 1.074428e+01 | 7.392236e-01 | 14.534550 | 1.023979e-45 | 9.294611e+00 | 1.219395e+01 |
| Country_Israel | 9.392544e+00 | 6.020722e-01 | 15.600361 | 4.764306e-52 | 8.211836e+00 | 1.057325e+01 |
| Year | 3.207764e-01 | 1.329531e-02 | 24.127039 | 5.805972e-114 | 2.947033e-01 | 3.468494e-01 |